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Excessive bacteria levels are the leading cause of impairment in U.S. water bodies. This

dissertation looked at the use of watershed-scale computer models to predict in-stream

bacteria concentrations. The study site was the Little River Experimental Watershed

(LREW) in Tifton, GA, and fecal coliform fate and transport models were built for four of

the LREW catchments over the period Jan 1996 - Dec 2002. A multi-model approach was

used in the study to examine the current capacity of industry-standard models and to avoid

conclusions unique to a particular catchment. Three models were examined: HSPF, SWAT,

and a new model based on the principles of hydrograph separation called the Characteristic

Concentration (CC) model. Sensitive hydrology and water-quality parameters were

identified in HSPF and SWAT and a response-surface iterative scheme was used to calibrate

the sensitive parameters of the models, while a simpler calibration method was used for the

2-parameter CC model. Model performance, both hydrology and water-quality, was

evaluated by the Nash-Sutcliffe statistic. The research was conducted in three substudies: an

examination of the three models’ performance in modeling bacteria concentrations in all

four catchments, an examination in HSPF and SWAT to determine the relationship between

model performance and the hydrologic state of the watershed, and an examination of model

combination possibilities to further analyze model performance and provide methods for

combining model output to maximize model results beyond what the individual models

could achieve.
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The research revealed that while the hydrology components of HSPF and SWAT could be

considered strong the water-quality components were not as strong. The model parameters

describing in-stream bacteria processes were consistently more sensitive than parameters

describing terrestrial processes of bacteria, a result that was reinforced when considering

the hydrologic state of the watersheds. A Latin Hypercube analysis revealed that parameter

uncertainty is significant in the models, but that structural uncertainty resulting from the

model process equations is the dominant source of uncertainty in model predictions. The

model combination methods were able to provide an improved set of model predictions and

showed that in some cases the use of a single calibrated model may still not be the best

representation of a watershed. In all cases the CC model performed comparably or better

than HSPF and SWAT, and provided a new model framework for analyzing the

environmental fate and transport of bacteria. The CC model is worth using in future

modeling studies and may be particularly useful in model combination applications since it

is comparatively much simpler to use and less data-intensive than either HSPF or SWAT.
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But blessed is the man who trusts in the LORD,

whose confidence is in him.

He will be like a tree planted by the water

that sends out its roots by the stream.

It does not fear when heat comes;

its leaves are always green.

It has no worries in a year of drought

and never fails to bear fruit.

Jeremiah 17:7-8 (NIV)

By wisdom the LORD laid the earth’s foundations,

by understanding he set the heavens in place;

by his knowledge the deeps were divided,

and the clouds let drop the dew.

Proverbs 3:19-20 (NIV)
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Chapter 1

Introduction

1.1 BACKGROUND

Excessive concentrations of bacteria are under investigation worldwide as a significant

problem in water bodies. In the United States, for example, elevated levels of

pathogen-indicator bacteria are the leading cause of impaired waters (USEPA 2008), while

the topic has drawn attention in other countries as well (e.g., Jamieson et al. 2005; Tyrrel

and Quinton 2003; Obiri-Danso and Jones 1999; Bougeard et al. 2011). High indicator

bacteria levels may imply fecal contamination and an increased risk of exposure to

pathogens like Cryptosporidium, Salmonella, Giardia and Escherichia Coli. Fecal

contamination is of notable concern as evidenced by an outbreak in Milwaukee in 1993,

where Cryptosporidium of fecal origin contaminated drinking water and led to roughly

403,000 illnesses, 50 fatalities, and nearly $100 M in total medical costs and productivity

losses (Corso et al. 2003; Hoxie et al. 1997). Similarly, in May of 2000, contamination of

the Walkerton, Canada municipal water system with Escherichia coli 0157:H7 and

Campylobacter jejuni led to seven fatalities and 2300 people requiring medical attention.

The most likely cause of contamination of the municipal well water was determined

1
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to be the infiltration of manure-associated bacteria to the aquifer used for drinking water

(Unc and Goss 2004).

Water-quality standards for bacteria are written in terms of indicator organisms, and the

ideal criteria for describing an indicator organism are (Bitton 2005):

1. It should be one of the intestinal microflora of warm-blooded animals.

2. It should be present when pathogens are present, and absent in uncontaminated samples.

3. It should be present in greater numbers than the pathogen.

4. It should be at least equally resistant as the pathogen to environmental insults and to

disinfection in water and wastewater treatment plants.

5. It should not multiply in the environment.

6. It should be detectable by means of easy, rapid, and inexpensive methods.

7. The indicator organism should be nonpathogenic.

While no organism perfectly meets these criteria, the most common indicators are members

of the Total Coliform group, defined as the aerobic and facultative anaerobic,

gram-negative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas

production within 48 hours at 35◦C (Bitton 2005). Most current freshwater water-quality

standards use Fecal Coliform bacteria (FC) as the indicator, where FC are all coliforms that

can ferment lactose at 44.5 ◦C. FC are indicative of fecal material from warm-blooded

animals (Bitton 2005) and can account for upwards of 98% of the total coliforms in feces

from warm-blooded animals (Guber et al. 2006). Escherichia coli (EC) is a member of the

FC group, and some states are now in transition to EC standards. In Texas, for example, the

standard indicator organism for bacteria was changed from FC to EC for freshwater and

Enterococci for saltwater (LaWare and Rifai 2006), although FC is still used when adequate

data of the updated indicator organisms is not available. In some cases regression equations

are available to convert between FC and EC concentrations (e.g., VADEQ 2004). The most

common unit of expressing quantities of bacteria cells is Colony Forming Units (CFU).
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Sources of in-stream pollutants are generally grouped into two categories: point sources

(PS) and non-point sources (NPS). Point sources are discrete sources such as effluent

discharges from wastewater treatment plants (WWTP). Because of the discrete, localized

nature of PS, legislative efforts such as the National Pollutant Discharge Elimination

System (USEPA 2001) have succeeded in quantifying PS loads, reducing them to

acceptable levels, and maintaining them at those levels. Non-point sources, on the other

hand, generate loads from distributed sources and are generally considered to be the more

problematic source (Jamieson et al. 2004). For example, runoff from rainfall is known to

transport materials from land surfaces to water bodies, but the exact pollutant loads depend

on a variety of factors such as rainfall amount and intensity, constituent solubility, land use,

and soil properties such as infiltration capacity and saturation level. In agricultural areas,

land-use practices such as the application of manure as fertilizer can contribute significantly

to NPS bacteria loads. Feces of livestock such as sheep, chickens, and cattle typically

contain loads of 16, 1.3, and 0.23×106 FC per gram, respectively (Metcalf & Eddy 2003).

Similarly, fresh, pasture-collected feces of sheep, cattle, and horses have been shown to

contain loads of 11.2, 7.59, and 0.617×105 EC per gram, respectively (Weaver et al. 2005).

Such quantities are sometimes collected from feed lots and barns and stored by land

managers for later application, but when not collected the quantities may be deposited by

the animals on-land or directly into surface waters depending on grazing patterns and water

access (e.g. Shirmohammadi et al. 1997). Once released from the source and depending on

soil conditions, bacteria may be transported to surface waters via overland flow (Tyrrel and

Quinton 2003; Muirhead et al. 2006b); be transported via infiltration and percolation to

subsurface soils after land-surface deposition (Muirhead et al. 2006a); travel horizontally in

subsurface soils (Gagliardi and Karns 2000; Hunter et al. 1992; McMurry et al. 1998);

survive in the soil matrix for extended periods of time, even through extreme cold and

freeze-thaw cycles (Ishii et al. 2006; Byappanahalli et al. 2003); survive in streambed

sediment (Jamieson et al. 2005; Crowther et al. 2002); and/or demonstrate significantly
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varying levels of persistence and survivability depending on environmental factors

(Bonjoch et al. 2011). The Total Maximum Daily Load (TMDL) program was developed as

an additional policy-based measure to allocate acceptable loadings throughout a watershed

(e.g. USEPA 2001). Legislative efforts such as NPDES and TMDL have paved the way for

addressing pathogenic contamination, but much work is needed to truly mitigate the

problem; as of 2009 there were over 10,000 TMDLs in the U.S. approved or being

developed for pathogens alone (USEPA 2009).

A variety of mathematical models have been developed to analyze the fate and transport of

environmental pollutants at the watershed scale. The models are powerful tools for use in

environmental monitoring as they provide users the flexibility of inputting site-specific

landscape and meteorological data and the ability to model pollutant loadings under various

land-use scenarios. For example, models allow users to specify livestock and poultry

defecation rates and fecal loadings, manure applications, point sources in rivers, and types

of land use, to examine the overall effect that different environmental processes have on

nearby water quality. The models typically require significant amounts of input data such as

meteorological, hydrological, topographical, geographical, geological, and contaminant

data. Although these models can be powerful tools, their deficiencies and limitations are

well documented (e.g., Oliver et al. 2009; Shirmohammadi et al. 2006; Hantush and Kalin

2008; Haan 1989). The most significant hindrance is the inability to program or build a

model able to perfectly replicate complex environmental phenomena, resulting in model

predictions laden with a degree of uncertainty. One way of reducing the limitations of

inherent uncertainty in a model is by using more than one model; the implementation of

several differing models at the same site will provide a variety of results, and a proper

synthesis of the model outputs may reveal insight into actual processes that might not be

evident by the use of a single model. Additionally, combining models may produce new

model predictions that fit data better than the predictions of an individual model and

provide additional insight.
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While certain model input quantities are relatively easy to measure and use with confidence,

such as average daily temperature or humidity at a meteorological station, average daily

streamflow, or land use (via GIS) in a catchment, other quantities have much less certainty.

This is particularly true with a water-quality constituent like bacteria, where data collection

requires a site visit, a grab sample, and several hours of laboratory analysis before

concentrations are enumerated. Moreover, whereas meteorological and hydrological data

are frequently recorded on a sub-hourly, hourly, or daily time-scale, the cost- and

time-intensive nature of collecting water samples for bacterial analysis means it is typically

done on a weekly or monthly time-scale, and the grab samples are sometimes assumed to be

daily-average values (e.g. Jia and Culver 2008). For practical reasons, however, these grab

samples are rarely taken during or directly after a significant rainfall event, when it is

suspected that in-stream bacterial fate and transport dynamics are highly active (e.g.

McDonald et al. 1982). Inevitably, some bacteria samples are taken during baseflow

conditions and may not appropriately represent the contributions from land surfaces via

runoff. (In an attempt to address the lack of data during rainfall events, Davies-Colley et al.

(2008) used an automated bacteria sampling device installed near a hydrological weir that

could be triggered remotely by cell phone, and took samples every 2 hours for 48 hours.)

The difficulties associated with attaining and using bacteria data remain significant issues in

the development of bacteria models, as reflected by the limited data available in most

bacteria modeling studies and the relatively low levels of accuracy achieved by the models

compared to other water quality constituents (Baffaut and Sadeghi 2010). Nonetheless, only

through further modeling efforts can model uncertainty be understood and remedied to

better address the link between PS, NPS, and in-stream bacteria concentrations.

1.2 PURPOSE AND SIGNIFICANCE

The purpose of the research presented in this dissertation is twofold: first, to examine the

current capacity of watershed-scale modeling of bacteria, and second to present several new
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methods of modeling bacteria such as a new model, a new seasonal analysis for current

models, and new model-combination possibilities to maximize model predictions relative to

the data. Two complex, state-of-the-art, watershed-scale, industry-standard models with

U.S. government approval were used: HSPF (EPA- Bicknell et al. 2001) and SWAT (USDA-

Neitsch et al. 2005). The new model presented is the Characteristic Concentration (CC)

model (Chin, 2011a), and is based on the principles of hydrograph separation. The study

site is a USDA experimental watershed in south-central Georgia, USA, and HSPF (v. 2.3),

SWAT (v.2009), and CC models were built for four subcatchments within the watershed to

minimize localized effects unique to a single watershed. The research was divided into three

studies: 1) all three models were tested to evaluate their performance in modeling bacteria;

2) an investigation was conducted in HSPF and SWAT to determine the relationship

between model performance and the hydrologic state of the watershed; and 3) model

combination possibilities were considered in an attempt to both provide new modeling

options and to maximize model results beyond what the individual models could achieve.

The work presented here is significant because it directly addresses the leading

environmental water pollutant in the nation. The research methods and results are directly

applicable to current work, provide tools to improve current modeling capacity, and

highlight important fields for future research. The net result is an enhanced capacity to

address a major concern of both human and environmental health, to ensure that the risk of

tragedies like what happened in Milwaukee and Walkerton is drastically reduced, both

domestically and internationally.

1.3 ORGANIZATION AND CONVENTIONS

The remainder of the dissertation is structured as follows: Chapter 2 provides a literature

review on the complexity of environmental bacteria processes; Chapter 3 introduces the site

location and provides a description of the models; Chapter 4 addresses the theory of model
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calibration and explains how the models used in the research were calibrated; Chapter 5

presents the first study; Chapter 6 presents the second study; Chapter 7 presents the third

study; and Chapter 8 provides an executive summary.

Throughout the course of this dissertation, HSPF and SWAT will frequently be discussed

together. As a convention, HSPF will always be addressed first, based simply on

alphabetical order and not as a reflection of model capacity or preference. In cases when all

three models are being discussed, the CC model will be discussed last.
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Chapter 2

Literature Review

2.1 BACKGROUND

In the natural environment, bacteria exhibit a wide variety of complex behavioral patterns

that make the analysis of environmental fate and transport difficult. A summary of the

principal phenomena is provided here.

2.2 GENETIC VARIABILITY

Within the realm of Fecal Coliforms (FC), a large degree of variation in bacteria types and

behavior exists. The variation is due not only to the genetic makeup of different species but

also to adaptability to various environmental stimuli. For example, Bolster et al. (2009)

conducted a laboratory study to look at the diversity of several strains of EC taken from six

sources: beef cattle, dairy cattle, horse, human, poultry, and wildlife. Two isolates were

taken from each source, and each isolate was used in a column transport test. Despite being

subjected to the same controlled storage and growth conditions the results revealed a wide

range of cell properties and transport behavior among the different isolates. Moreover, in

many cases the two isolates obtained from the same source showed statistically significant

8
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differences in cell properties. The study used a 2nd-order (time dependent) deposition

model to describe the EC transport through the column, yet the researchers found that “a

large diversity exists in the transport behavior among the different EC isolates and that

model parameters obtained for one EC strain will likely be inadequate for describing the

transport behavior of other strains of EC.” The authors conclude by cautioning against

making generalized comments about the transport of EC based on the performance of a

single EC strain and suggest using a distribution of bacterial parameters when modeling

environmental EC, even when the samples originate from a single fecal source.

Notable bacteria diversity has also been observed outside the laboratory. A study by Ishii

et al. (2006) examined the presence of EC in three soils near Duluth, MN. The three sites

were found to contain 32, 84, and 49 unique EC strains, and the strains were found to be

highly genetically related. They found that the strains from each site clustered together,

indicating a tendency for different populations to become independently naturalized at each

site. Moreover, the authors found that the EC strains in the soil were easily differentiated

from EC strains obtained from nearby water, could exist in the soils over seasonal

freeze-thaw cycles, and were different than those expected of local water and wildlife,

indications that the bacteria were likely naturalized to the soil and not directly deposited or

replaced by EC from animal feces or water.

Bacteria diversity in environmental samples is further complicated by the number of

possible sources contributing to a given sample. Any given riverine sample could consist of

bacteria from livestock, wildlife, streambed sediment, or upstream sources like WWTP

outfalls. Bacteria source tracking is a useful technique that can reveal varied percentages of

human- and/or animal-generated bacteria in a single sample (e.g. Scott et al. 2003). Other

studies have shown significant variability in bacteria sources between samples in a given

day and between sampling days and sites (Meays et al. 2006). One examination of swine
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manure found 14 different species of bacteria that can cause disease in humans (Entry et al.

2000a).

2.3 BACTERIA FATE AND TRANSPORT IN THE ENVIRONMENT

There is a consensus in the literature that increased in-stream bacteria concentrations are

observed after rainfall events. A description of the major known processes contributing to

this phenomena are presented here.

2.3.1 Overland Flow

Overland flow can be defined as the portion of surface runoff that reaches a stream channel

by traveling over the surface of the ground, and it occurs when precipitation intensity

exceeds infiltration capacity (Gupta 2001; Black 1991). Bacteria in overland flow tend to

occur either in flocs of cells, as single cells, or attached to soil particles (Tyrrel and Quinton

2003). Cell motility is limited to small scales, and the main transport mechanism at larger

scales is via passive transport in water fluxes of surface runoff or infiltration (Unc and Goss

2004). Removal mechanisms that reduce bacteria quantities in overland flow include

settling to the ground surface, filtration due to passage through the soil matrix, and filtration

due to contact with vegetation (Muirhead et al. 2006a). Single bacteria are small and

neutrally buoyant in water, reducing the likelihood of removal by these mechanisms for

individual cells (Fiener and Auerswald 2003; Muirhead et al. 2006a). For sediment-attached

bacteria and flocs of cells, however, these removal mechanisms are significant. It has been

estimated that bacteria attached to soil particles > 63µm in diameter would settle out of

overland flow and that flocs of cells would need to be > 500µm in diameter before being

filtered out by grasses (Fiener and Auerswald 2003). Muirhead et al. (2006b) demonstrated

that bacteria attached to large soil particles are transported less than unattached cells, since

large soil particles tend to settle to the surface and are more easily filtered. However,

Muirhead et al. (2006b) also showed that bacteria tend to attach to smaller soil particles
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(fines) in the water flow. The significance of this behavior was apparent under

saturation-excess runoff conditions, where single EC cells were rapidly transported via

advection in the flow and EC attached to smaller soil particles did not settle. Previous work

showed that EC did not erode in flocs and only 8% of EC cells from cowpats were attached

to particles, indicating that in some cases the vast majority of bacteria cells may be

transported in overland flow as single cells. Bacteria adsorption to sediment may be further

complicated by the soil type of the sediment (Ling et al. 2002) and whether the bacteria are

hydrophobic or hydrophilic (Unc and Goss 2004).

2.3.2 Infiltration and Subsurface

As rainfall and surface waters infiltrate into the ground, bacteria cells are inevitably carried

into the soil matrix. The soil matrix can serve as both a source and a sink of bacteria in

terrestrial processes (e.g. Ishii et al. 2006; Muirhead et al. 2006a), although a uniform

matrix is thought to function as a filter that prevents bacteria from passing into subsurface

layers. Certain practices, however, facilitate the transport of bacteria to and through

groundwater and can create significant health concerns if the bacteria encounter subsurface

sources used for drinking water (e.g. Macler and Merkle 2000). One such practice is the

disposal of human waste to subsurface layers, normally done through legal septic systems

(which are prone to leak over time), illegal point-source dumping, or in some cases,

especially in undeveloped areas and countries, flushing wastewater directly into a covered

hole in the ground (LaWare and Rifai 2006). These actions not only increase the risk of

groundwater pollution, but do so with human waste. Exposure to human waste is significant

since quantities of human-specific pathogens are much higher in human waste than in waste

from other warm blooded animals (LaWare and Rifai 2006; Macler and Merkle 2000).

Another such practice is the use of manure as a fertilizer, which may be applied as a solid or

liquid to the land surface or injected directly into the ground (Pappas et al. 2008). Manure

typically holds large quantities of fecal bacteria and is one of the most significant non-point
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sources addressed by land-use regulation efforts (e.g. Goss and Richards 2008; Hooda et al.

2000; Shirmohammadi et al. 1997). For a perspective on the quantities of manure produced

in agricultural areas, Aitken (2003) estimates that a 706 km2 (273 mi2) catchment in

Scotland with above-national-average livestock densities produces a daily EC loading

equivalent to the EC loading of untreated sewage from 1.4 million people. While an effort is

made in agricultural areas like this to collect and store manure for later use, the sheer daily

volume may be prohibitive and ultimately facilitates the movement of surface bacteria to

subsurface layers (Shirmohammadi et al. 1997). Studies have revealed elevated fecal

bacteria levels in subsurface drain water within minutes to hours after manure application,

and in one case a 30- to 900-fold increase in fecal bacteria was observed in subsurface

water after land application of manure (Pappas et al. 2008).

The transport of bacteria in subsurface layers is also facilitated by the existence of

subsurface irregularities that disrupt the uniformity of the soil and seriously compromise the

soil’s filtration capacity. Such irregularities are considered “soil macropores” and can result

from capillary-sized pores, isolated vertical zones of loose or porous soil, soil cracks, areas

surrounding plant roots, and non-biological voids (Hunter et al. 1992; McMurry et al. 1998;

Unc and Goss 2004). These macropore networks create regions of preferential flow that

provide a pathway for bacteria to reach new (and sometimes unexpected) locations and in

shorter time intervals than would be expected, posing a threat to groundwater sources of

drinking water. Results have shown that bypass flow through macropores in structured soils

is more the rule than the exception (Unc and Goss 2004). Subsurface transport is magnified

in areas with Karst geology, where a network of large and connected subsurface voids

increases flow and decreases pathogen filtering, making Karst systems especially vulnerable

to pathogen transport (Baffaut and Benson 2009).
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2.3.3 Die-Off and Persistence

Since bacteria are living organisms the process of die-off is fundamental to the analysis of

environmental survival and fate. First-order kinetics are typically used to describe bacteria

die-off, most commonly expressed as Chick’s Law (e.g. Wilkinson et al. 1995):

Nt = N0 exp(−kdt) (2.1)

where Nt is the bacteria population at time t (CFU), N0 is the initial population (CFU), and

kd [T−1] is a decay constant. It is widely accepted that temperature is the primary factor that

affects fecal bacteria die-off, where higher temperatures increase die-off. Moreover, kd

varies with temperature and has been shown to fluctuate over orders of magnitude

depending on environmental conditions. For example, an EPA study analyzed 30 separate

in-situ studies and found that the decay rate for coliform in fresh water ranged from 0.12 to

26 d−1 with a median of 1.0 d−1. Wilkinson et al. (1995) summarized die-off rates for FC

from five different studies and showed that for a temperature range of 0-30 ◦C, the die-off

rate varies from less than 0.03 d−1 to greater than 1.0 d−1. Due to the wide range of reported

die-off rate values and the highly site-specific nature of the results, they commented “Direct

comparison of die-off rates taken from different studies should be treated with caution.”

Chick’s law is often rearranged to express T90, the time needed for 90% of the initial

bacteria population to die (e.g. Kashefipour et al. 2006; Wilkinson et al. 1995).

Although the die-off rate is the dominant factor in describing bacteria survival, other

important factors are sunlight exposure, turbidity, salinity, soil type, soil pH, moisture

content, nutrient availability, vegetation, and predation, and the relative effects of these

factors may be strain and species specific (Pappas et al. 2008; Tyrrel and Quinton 2003;

Ishii et al. 2006). Wilkinson et al. (1995) report that sunlight, for example, has both direct



www.manaraa.com

14

and indirect effects, where sunlight directly causes cell damage and indirectly affects

temperature and moisture. They report that T90 values between direct sunlight and shade or

darkness can vary between 1-2 hours and several days. Similarly, turbidity directly affects

exposure to sunlight so that clean rivers or lakes will have higher die-off due to sunlight

than dirtied waters like those that receive sewage or effluent. One modeling study addressed

the issue by using a total decay rate comprised of two components, one as a function of

sunlight decay rate and the other a function of dark decay rate (Kashefipour et al. 2006).

The net result of all these factors is a broad range of kd values reported in the literature for

FC and EC and in fresh and salt waters.

In addition to die-off, bacteria can persist and adapt to environments to create sustained

populations. In the Ishii et al. (2006) study the authors were able to conclude that

“soilborne, naturalized strains were adapted to this soil and were not continuously added

from external sources.” Similarly, Hunter and McDonald (1991) found high concentrations

of fecal bacteria in upland streams and suggest that in some areas a semi-permanent land

store of bacteria may exist in surface soils, and the store may act as a potential source of

bacteria to streams during hydrological events. Moreover, pathogen survival in the upper

soil layer has been shown to vary from 4 to 160 days (Entry et al. 2000b) while Gagliardi

and Karns (2000) add that “it has been shown that the levels of members of several genera

of pathogenic bacteria decrease only slightly during 100 days in groundwater alone, and

several studies have shown that sediments serve as reservoirs for fecal pathogens.”

2.3.4 Streambed Sediment

While various terrestrial processes are acknowledged to be a store and/or source of bacteria,

river channels can also be a significant source of bacteria (e.g. Jamieson et al. 2004;

Obiri-Danso and Jones 1999). Other than point sources, the most commonly suspected

source of bacteria in river channels is in the river bed sediment, although direct deposition

of grazing animals and wildlife may also be significant (Meays et al. 2006; Hooda et al.
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2000). River bed sediment is an ideal environment for bacteria survival due to minimal light

exposure, increased protection from predators, and high nutrient concentrations (Russo

et al. 2011; Bai and Lung 2005).

When streambed sediment is agitated or disrupted, the entrained bacteria become dislodged

and are suspended in the water column. This phenomena is induced by increased

streamflow, usually in the wake of a rainfall event, although something as simple as an

animal crossing a stream and disrupting sediment with their hooves can have the same

effect (Goss and Richards 2008). This concept has been illustrated by experiments using

artificial flows in rivers in otherwise dry periods to examine what occurs in the absence of

rainfall (e.g. McDonald et al. 1982; Davies-Colley et al. 2008). The studies showed that

significant peaks in bacteria concentrations occurred, but that the bacteria peaks arrived

before the flow peak, indicating that the peak bacteria were more likely from flow-agitated

streambed sediment than terrestrial sources. This observation does not negate the

contribution from the land store as a result of rainfall and runoff, but does reveal that

in-stream sources contribute significantly to the observed heightened concentrations after

rainfall events. Moreover, McDonald et al. (1982) showed that in a 1-hour interval between

artificial stream pulses, bacteria initially suspended by the first pulse attempted to settle but

were re-suspended by the second pulse. An additional complication occurs when increased

river flow contacts wetted stream-banks and suspends or dislodges bacteria otherwise

attached to bank sediment and soil (Byappanahalli et al. 2003). A similar phenomena may

occur in tidal areas, where EC concentrations were observed to increase with high tide as an

urban river covered more of its streambank and when it was determined low tide

(predominantly baseflow) conditions were not a source of EC (Solo-Gabriele et al. 2000).
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2.4 CONCLUSION

This chapter has shown that environmental bacteria processes are complicated and depend

on a variety of localized environmental factors such as meteorology, soil type, land use, and

livestock species. Moreover, enough behavioral variety has been observed, even among

single samples or identical strains of bacteria, that making universal conclusions about

these processes beyond general relationships is a difficult and likely impossible task. Using

these conclusions to develop process equations for a bacteria model is therefore a

challenging and uncertain process. For example, how can equations governing overland

transport and sediment adsorption of bacteria be accurately programmed into a model when

the process is so dependent on varying micro-scale factors? How can parameters be used to

accurately describe soil types and infiltration rates when these properties are rarely

homogeneous beyond the plot scale, let alone in application of watershed-scale models?

How can data collected at time scales of weeks or months be used to evaluate bacteria

processes that might only last minutes or hours? It is apparent that models can not

accurately account for all of these complex processes, and therefore model performance

will always carry a degree of uncertainty. And yet, these uncertain models are the most

useful tools available for addressing the nation’s premier water-quality problem. Therefore,

it is only through further research and model development that these tools can be sharpened,

resulting in the reduction of model uncertainty and an improved ability to replicate and

predict bacteria concentrations.
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Model Setup

3.1 SITE DESCRIPTION

The site chosen for this study is the Little River Experimental Watershed (LREW) near

Tifton, GA (Fig. 3.1), due to the availability of appropriate data needed for modeling. The

LREW has an area of 334 km2 centered approximately at N31.61, W83.66, has broad

floodplains, river terraces, and gently sloping uplands, and is representative of the

agricultural areas in the Southeast Coastal Plain (Bosch et al. 2007). The LREW is located

in Turner, Worth, and Tift counties and is part of the headwaters of the Suwannee River

Basin (Sullivan et al. 2007; Feyereisen et al. 2007). Stream-channel slopes range from

0.1%-0.4% (Bosch and Sheridan 2007), while land slopes are mostly less than 5%, although

some valley slopes range from 5 to 15% (Bosch et al. 2007). Land use types in the LREW

are predominantly agriculture and forest with small percentages of water and

residential/commercial (Sheridan 1997). Non-pasture agricultural lands are primarily row

crops of cotton, peanuts, corn, and fruit and vegetable crops (Feyereisen et al. 2007;

Sullivan et al. 2007). Riparian buffers are common in the region and are dominant

hydrological features of the landscape, while the subsurface properties of the region

17
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facilitate significant subsurface flow both in the vadose zone and shallow groundwater

(Bosch et al. 2010). The USDA began hydrological and meteorological monitoring in the

LREW in the late 1960s and an extensive database has been developed for the seven

sub-catchments within the LREW (F, I, J, K, M, N, O), which range in size from 3-115 km2

(Sullivan et al., 2007; Bosch et al., 2007a; Bosch et al., 2007b, Bosch and Sheridan, 2007;

Feyereisen et al., 2007). Several studies have characterized the hydrological properties of

the LREW (e.g. Sheridan, 2007; Bosch et al., 2005; Feyereisen et al., 2008; Feyereisen et

al., 2007a; Bosch et al., 2010; Chin et al., 2009; Sheridan et al., 1997; Zhang et al., 2011;

White et al., 2009; Cho et al., 2010). The LREW database can be accessed at

ftp://www.tiftonars.org/.

Catchments I, J, K, and O were selected for this study, where Catchments J and K are

nested within I, and Catchment O contains more intensive dairy practices. General

Table 3.1: LREW catchment summary data

Catchment ID Stream Area Land-Use %† Max Min
Order (km2) Ag. For. Urb. Elev. (m) Elev. (m)

I 4950 4 49.9 52 48 0 146 102
J 4850 3 22.1 52 48 0 146 105
K 4860 3 16.7 46 54 0 146 106
O 6860 4 15.9 83 12 5 122 86

* -from Feyereisen et al. 2007
† -area percentages from HSPF and SWAT model build

information regarding each catchment is shown in Table 3.1. With the exception of a small

urban portion in Catchment O, agricultural and forest lands are the only land types in the

catchments. Precipitation measurements are collected in five-minute intervals by the LREW

instrumentation, TE525 tipping-bucket gages (Texas Instruments, Inc., Dallas, Texas) with

a measurement precision of 0.254 mm and accuracy ±0.5 mm/hr. Rain gages 43 (UTM

3513276 m N, 242618 m E) and 64 (UTM 3488321 m N, 259444 m E) were used for

catchments K and O, respectively, while rain gage 38 (UTM 3511453 m N, 241558 m E)

was used for both catchments I and J. Streamflow measurements were made by weir
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Figure 2. Little River Experimental Watershed subbasins.

W09470 BOSCH ET AL.: LITTLE RIVER DATABASE

3 of 6

W09470

Figure 3.1: The Little River Experimental Watershed in Tifton, GA (Bosch et al. 2007)

structures with design specifications as described in Bosch and Sheridan 2007, and daily

average streamflow values are reported in the LREW database. Hourly measurements of

cloud cover, wind velocity, dewpoint, and air temperature were taken from the Moody Air

Force Base (station 747810) in Valdosta, GA, approximately 70 km from the LREW. To

guarantee that the HSPF and SWAT models were built as similarly as possible, identical

shape files for the elevation, land use and soil types were used to build the models. The

shape files were downloaded from the EPA BASINS (v4.0) system, and the models were

built using the USGS National Elevation Dataset, USGS GIRAS, and STATSGO data sets

for elevation, land use, and soil type, respectively. BASINS was used to delineate the
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catchments in HSPF, while the ArcSWAT/ArcGIS interface was used to build and delineate

the catchments in SWAT. Because SWAT handles land-use types differently than HSPF, the

thresholds per land use and soil type were adjusted in the building of the SWAT models to

match the setup in HSPF. Since HSPF and SWAT operate at different time steps, the

meteorological data was aggregated appropriately for input to the models.

All models were developed for the period Jan 1996- Dec 2002. FC datasets with

approximately monthly measurements during the period Jan 1997-Apr 2002 were used

(Vellidis et al. 2010), and some summary statistics of the FC datasets are shown in Table

3.2. Meteorological activity during the study period yielded wet years from 1996-1998

Table 3.2: Summary of fecal coliform datasets

LREW Catchment
I J K O

# FC Data Points 47 55 53 48
Min Value (CFU/100mL) 6 7 17 15
Max Value (CFU/100mL) 12000 7000 6500 4000
Geometric Mean (CFU/100mL) 208 153 215 157

and dry years from 1999-2002, based on whether the annual precipitation was greater or

less than the long-term average annual precipitation (Feyereisen et al. 2007). Although the

average annual precipitation facilitates division into wet and dry years, it is not completely

representative of the meteorological patterns in the LREW, since rainfall in the region is

poorly distributed throughout the year and frequently leads to drought conditions in the

summer growing season (Bosch et al. 2005). The monthly rainfall totals were below

average for January, February, April, May, and December for the dry years (1999-2002)

(Bosch et al. 2005). The LREW was affected by Hurricane Earl in Aug/Sep 1998, and

Hurricane Gordon in September of 2000 caused the monthly precipitation to be 3.5 times

the long-term average (Bosch et al. 2005).



www.manaraa.com

21

3.2 MODEL DESCRIPTIONS

Previous studies that have examined bacteria modeling in both HSPF and SWAT include

Singh et al. (2005) and Chin et al. (2009). Benham et al. (2006), in particular provide a

detailed study of the process equations relating to bacteria fate and transport in HSPF and

SWAT.

3.2.1 HSPF

The Hydrologic Simulation Program Fortran (HSPF) (Bicknell et al. 2001) is a

watershed-scale, process-oriented model that operates on an hourly time step. The model

uses three main modules to represent a watershed: pervious land segments (PERLND),

impervious land segments (IMPLND), and reaches and reservoirs (RCHRES), each of

which are considered to be hydrologically homogeneous. Storage during runoff and

infiltration are determined using the Manning and Philip equations, respectively, a storage

routing technique is used to route water in reaches, and a mass-balance approach is used to

determine the distribution of water in the system. The soil structure of pervious areas is

divided into four layers or zones. The surface layer receives rainfall and irrigation, and

water from the surface layer may become overland flow. The upper zone represents water in

depressional storage on the surface and in the top layers of the soil. Water in the upper zone

that does not percolate to lower layers may become direct evapotranspiration. The lower

zone represents the root zone of plants, and water in the lower zone may become

evapotranspiration depending on factors like vegetation type, rooting depth, and soil

properties. The upper and lower zones both have water storage components and can both

receive water from and contribute water to interflow. Water that infiltrates and percolates

through the upper zone and lower zone arrives at the groundwater layer, at which point it is

further distributed between active groundwater and inactive groundwater.
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A summary of the process equations in HSPF describing infiltration and runoff, interflow,

groundwater, and water quality, as described in Bicknell et al. 2001, are provided below.

Description of Infiltration and Runoff Processes

In HSPF, the moisture available to land surfaces, Mls, is distributed between infiltration,

interflow, and surface runoff according to the relationships shown in Figure 3.2. The

abscissa of Figure 3.2 is the % of watershed area, the ordinate is the amount of water

considered per interval (in), and Lines 1 and 2 distribute the total moisture available (Mls)

into regions of infiltration capacity (below Line 1), potential interflow and inflow (between

Lines 1 and 2), and potential surface detention and runoff (above Line 2). The shape of the

figure is based on the calculation of the mean infiltration capacity over the land segment, I1

(in/interval), found by

I1 =
�

I f

LIe

�
Ig (3.1)

where I f is a parameter describing infiltration capacity of the soil (in/interval), L is a ratio of

lower zone storage (in) to lower zone nominal capacity (in), Ie is an exponent parameter that

must be greater than 1.0 [-], and Ig is a factor to account for frozen ground, if applicable [-].

Upon determining the value for I1, the remainder of Line 1 is described by the equations

Imax,1 = IdI1 (3.2)

and

Imin,1 = I1−
�

Imax,1− I1

�
= 2I1− Imax,1 (3.3)
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Figure 3.2: Distribution of infiltration and interflow inflow (Modified from Bicknell et al.
2001)

where Imax,1 is the ordinate of Line 1 at 100% of the area; Id is a parameter describing the

ratio of maximum to mean infiltration capacity over the land segment [-] and has a range of
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[1.0-2.0]; and Imin,1 is the ordinate of Line 1 at 0% of the area. Upon establishing Line 1,

Line 2 is determined using the relationship

R = In

�
2.0L

�
(3.4)

where R is the ratio of the ordinates of Line 2 to Line 1 and In is a parameter describing

interflow inflow [-]. It is apparent that the distribution of Mls shown in Figure 3.2, as

described by Equations 3.1-3.4, is primarily dependent on I1 as determined in Equation 3.1.

Moreover, since Ig is simply a factor accounting for frozen ground, the most important

parameters affecting I1 are those describing infiltration (I f ), the ratio between lower zone

storage and lower zone nominal capacity (L), and the exponential parameter Ie. The ratio L

can be greater than, less than, or equal to 1.0. The slope of Line 1 is determined by the

parameter Id . Since Id is limited to the range [1.0-2.0], HSPF requires that the maximum

infiltration (Imax,1) can not be more than twice the mean infiltration I1. It is also apparent in

Figure 3.2 that as the % of area increases, the amount of Mls assigned to potentail surface

detention and runoff decreases, and may even be zero, depending on the slopes of Lines 1

and 2. The interflow parameter (In) in Equation 3.4 has the most direct affect on the slopes

of the lines, and as In increases, the potential interflow and inflow increase while the

potential surface detention and runoff decrease.

Description of Interflow Processes

In HSPF, the interflow outflow is assumed to have a linear relationship to storage and is

therefore a function of inflow, storage, and a recession parameter. Contributions to the

interflow component may originate at the surface or come from upslope external lateral

flows, and are either retained in storage or routed as discharge from the land segment. The

interflow outflow is calculated by
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I f w = Ik1I f l + Ik2I f s (3.5)

where I f w is the interflow outflow (in/interval); I f l is the inflow into the interflow storage,

including lateral inflow (in/interval); I f s is the interflow storage at the start of the interval

(in); and Ik1 and Ik2 are variables determined by

Ik1 = 1.0+
�

Ik2

ln(Irc)δ/24.0

�
(3.6)

Ik2 = 1.0− exp
�

ln(Irc)δ/24.0
�

(3.7)

where Irc is an interflow recession parameter (d−1) and δ is the number of hours per time

interval considered. Irc is the ratio of the present rate of interflow outflow to the value 24

hours earlier, given no inflow. Irc is inversely proportional to I f w such that as Irc increases,

the interflow outflow decreases and vice versa. Values of Irc are in the range (0 1) and can

be input on a monthly basis to allow for variation in soil properties throughout the year.

Description of Groundwater Processes

In HSPF, water that infiltrates or percolates from the upper zone but does not go to lower

zone storage is assigned to either active groundwater or inactive groundwater. Inactive

groundwater is considered lost from the system, and a user-defined parameter exists to

describe the fraction of the groundwater inflow that goes to inactive groundwater. The

infiltrating and percolating water not distributed to the inactive groundwater combines with

any lateral inflow and/or irrigation water to form the total inflow to the active groundwater

storage. The outflow from active groundwater is calculated by
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Ago = KgwAgs

�
1.0+KvGs

�
(3.8)

where Ago is the active groundwater outflow (in/interval), Kgw is the groundwater outflow

recession parameter (interval−1), Ags is the active groundwater storage at the start of the

interval (in), Kv is a parameter which can make the active groundwater storage relation to

outflow nonlinear (in−1), and Gs is the index to groundwater slope (in). The parameter Kgw

is calculated as

Kgw = 1.0−
�

A(δ/24.0)
gr

�
(3.9)

where Agr is the daily recession constant of groundwater flow if Kv or Gs = 0.0; Agr can be

thought of as the ratio of current groundwater discharge to groundwater discharge 24-hr

earlier.

Description of Water-Quality Processes

HSPF does not distinguish between water-quality constituents but rather uses the same

process equations for all contaminants, while accounting for conservative and

non-conservative properties. In pervious areas (PERLND), water-quality constituents can

be simulated in surface and subsurface outflow. The concentrations in surface outflow are

considered as either associated with sediment transport or part of a system based on

deposition (mass per area per time), where accumulation and depletion of the constituent

dictate land-surface storage and the concentration in surface outflow is a function of the

surface-water flow and the land-storage concentrations. In addition to overland flow, HSPF

can model water-quality constituents in interflow, in groundwater, and sorbed to sediment;

users can specify which features to include or omit. Of the four methods of representing
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water quality constituents, only the overland flow method can receive deposition, since it is

the only one to maintain a storage feature. Deposition can be represented as a wet flux

associated with a concentration in rainfall, or as a dry flux applied directly to land surfaces.

In addition to overland flow, water-quality constituents can be accumulated and removed by

processes independent of storm events. In impervious areas (IMPLND), water-quality

constituents are only considered in overland flow and sorbed to sediment, and the

algorithms for these processes are the same as those for the pervious areas. In reaches and

reservoirs (RCHRES), water-quality constituents are considered in either a dissolved or

sediment-associated state. For non-sediment-associated cases, advection and decay

processes are modeled, while for sediment-associated cases the additional processes

considered are advection of suspended material, deposition and scour of sediment, decay of

suspended and bed material, and adsorption/desorption between dissolved and

sediment-associated phases.

The fundamental relationship describing surface storage of water-quality constituents is

S = Ac +S0(1.0−Rr) (3.10)

where S is the constituent storage on the surface (#/acre), Ac is the constituent accumulation

rate (#/acre · d), S0 is the constituent storage at the start of the interval (#/acre), and Rr is a

unit removal rate of the stored constituent (d−1). When surface runoff occurs while the

constituent is in surface storage, the constituent washoff is calculated by

Cw = S
�

1.0− exp
�
−Sw

2.30
S90

��
(3.11)
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where Cw is the washoff of the constituent from the land (#/acre · d), Sw is the surface

outflow of water (in/hr), and S90 is the surface runoff rate that induces 90% constituent

washoff in 1 hour (in/hr).

In-stream die-off is calculated by a first-order relationship

ct = c0 exp(−kt) (3.12)

where ct (#/ft3) is the concentration at time t, c0 is the initial concentration, and k is a

first-order decay rate parameter (hr−1). Constituent concentration in interflow outflow is

user-specified with a dedicated concentration parameter.

3.2.2 SWAT

The Soil and Water and Assessment Tool (SWAT) (Neitsch et al. 2005) is a watershed-scale,

process-oriented model that operates on a daily time step. The model divides a watershed

into subbasins to account for varying soil types and land uses. Hydrologic response units

(HRUs) are lumped land areas within the subbasin comprised of similar soil, land cover,

and management combinations. A shallow aquifer and a deep aquifer are simulated for each

subbasin. The shallow aquifer is unconfined and contributes to flow in the main reach of the

subbasin while the deep aquifer is confined and any water entering the deep aquifer is

assumed to contribute to streamflow outside the watershed, i.e. it is lost from the system.

For given daily rainfall amounts, runoff is calculated per HRU using the NRCS Curve

Number method and routed to obtain total watershed runoff.

A summary of the process equations in SWAT describing surface runoff, groundwater, and

water quality, as described in Neitsch et al. (2005), are provided below.



www.manaraa.com

29

Description of Surface Runoff Processes

SWAT uses the NRCS Curve Number (CN) method to estimate runoff volumes from

varying land use and soil types. The CN method is described by

QCN =

�
R− Ia

�2

�
R− Ia +S

� (3.13)

where QCN is the accumulated runoff or rainfall excess, R is the daily rainfall depth, Ia is

the initial abstraction, and S is the retention parameter, and all of these parameters are in

terms of mm of H2O. Runoff occurs when R is greater than Ia. The initial abstraction term

(Ia) accounts for surface storage, interception, and infiltration prior to runoff, and the

retention parameter (S) is calculated by

S = 25.4
�

1000
CN

−10
�

(3.14)

where CN is the curve number. Ia is commonly assumed to equal 0.2S and Equation 3.13

becomes

QCN =

�
R−0.2S

�2

�
R+0.8S

� (3.15)

The CN method, although empirical, is commonly used and relatively straightforward,

requiring only estimates of rainfall (R) and CN. Higher CN values lead to higher QCN and

estimates of CN for various land uses and soil types can be found in Neitsch et al. (2005)

and Chin (2006).
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Description of Groundwater Processes

SWAT uses the following water balance to describe the shallow aquifer:

As,i = As,i−1 +Wr,i−Qgw,i−Wrp,i−Wpump (3.16)

where As,i is the amount of water stored in the shallow aquifer on day i, As,i−1 is the amount

of water stored in the shallow aquifer on day i−1, Wr,i is the amount of recharge entering

the shallow aquifer on day i, Qgw,i is the groundwater flow, or base flow, into the main

channel on day i, Wrp,i is the amount of water moving into the soil zone in response to water

deficiencies on day i, and Wpump is the amount of water removed from the shallow aquifer

by pumping on day i. All terms have dimension mm of H2O. Aquifer recharge occurs when

water percolates beyond the lowest depth of the soil profile or when bypass flow passes

through the vadose zone, and the recharge to both aquifers on a given day is determined

using the exponential relationship

wrt,i = (1− exp[−1/δgw]) ·wsp + exp[−1/δgw] ·wrt,i−1 (3.17)

where wrt,i is the total amount of recharge entering the aquifers on day i (mm H2O), δgw is

the delay time or drainage time of the overlying geologic formations (days), wsp is the total

amount of water exiting the bottom of the soil profile on day i (mm H2O), and wrt,i−1 is the

total amount of recharge entering the aquifers on day i−1 (mm H2O). The term δgw cannot

be directly measured, but can be estimated by using different values of δgw to simulate

aquifer recharge and comparing the resulting variations in water table level with the

observed values. The portion of the total daily recharge routed to the deep aquifer is

described by the relation



www.manaraa.com

31

wd = βd ·wrt (3.18)

where wd is the amount of water moving into the deep aquifer on day i (mm H2O), βd is the

aquifer percolation coefficient [-], and wrt is the total amount of recharge entering both

aquifers on day i (mm H2O).

The water in the shallow aquifer may contribute to baseflow in the reach depending on a

threshold parameter that stipulates the minimum amount of water stored in the shallow

aquifer for baseflow contribution to occur. The groundwater flow to the reach on day i,

Qgw,i, is calculated using

Qgw,i = Qgw,i−1 · exp[−αgw ·∆t]+wr,sh · (1− exp[−αgw ·∆t]) (3.19)

if aqsh > aqsht and

Qgw,i = 0 (3.20)

if aqsh ≤ aqsht , where Qgw,i is the groundwater flow into the main channel on day i (mm

H2O), Qgw,i−1 is the groundwater flow into the main channel on day i−1 (mm H2O), αgw is

the baseflow recession constant, ∆t is the time step (1 day), wr,sh is the amount of recharge

entering the shallow aquifer on day i (mm H2O), aqsh is the amount of water stored in the

shallow aquifer at the beginning of day i (mm H2O) and aqsh,t is the threshold water level in

the shallow aquifer for groundwater contribution to the main channel to occur (mm H2O).

SWAT makes a distinction between water removed from the unsaturated zone for

evapotranspiration (ET) and the water displaced from the saturated zone to the unsaturated
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zone to replace the water lost to ET. This movement of water from the shallow aquifer to

the overlying unsaturated zone is referred to in SWAT as revap, and is modeled as a

function of water demand for ET:

wrev = βrev ·E0 (3.21)

where wrev is the maximum amount of water displaced to the unsaturated zone in response

to water deficiencies (mm H2O), βrev is the revap coefficient, and E0 is the potential ET for

the day (mm H2O).

Description of Water-Quality Processes

In contrast to HSPF, SWAT uses a suite of process equations designed specifically to

address bacteria fate and transport. The main source of terrestrial bacteria in the watershed

is the application of manure to land surfaces. Bacteria concentrations within the manure are

specified by a parameter governing land application (kg/ha) and a parameter describing

bacteria content in the manure (CFU/g). When manure is applied, the bacteria in the manure

is either attached to plant foliage or applied directly to the surface layer, defined by SWAT

as the top 10 mm of soil, and the partitioning of bacteria to these two surfaces is calculated

as a function of the ground cover. Washoff of the bacteria from the foliage to the surface

layer only occurs when daily precipitation exceeds 2.54 mm and is governed by a wash-off

fraction parameter that represents the amount of bacteria on the foliage considered

dislodgeable. Bacteria in the surface soil layer is considered to be either in solution or

adsorbed to surface soil particles, and bacteria in soil solution may be transported to deeper

soil layers via tillage or percolation, where it is assumed to die. Bacteria that wash off

foliage remain in solution in the surface layer. Die-off and regrowth, described by Chick’s

law, are considered for the addition and subtraction of bacteria to the system, and are
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calculated on foliage, in the surface soil solution, and on the soil particles. Bacteria in soil

solution may interact directly with surface runoff, and depending on soil properties, bacteria

attached to soil particles may be transported to the main channel via surface runoff. For

large subbasins with a time of concentration greater than one day, SWAT accounts for the

bacteria in the surface runoff which does not arrive at the main channel on the day it is

generated but rather goes to storage. For bacteria in-stream or in reservoirs, the only process

considered is die-off. Finally, SWAT allows for two types of bacteria to be modeled by

distinguishing between persistent and less-persistent bacteria. The fate and transport of the

two types are governed by distinct die-off and regrowth rates. The rationale for this

approach is to account for long-term impacts in soils, where persistent bacteria may become

significant in time. While this feature provides modelers with more flexibility in addressing

bacterial processes in their watersheds, Baffaut and Sadeghi 2010 comment that in practice

most SWAT models only use one of the types of bacteria due to a lack of information.

The die-off equation used for the soil surface solution is

bsl,i = bsl,i−1 · exp(−µsl)−bmin (3.22)

where bsl,i is the amount of bacteria present in soil solution on day i (CFU/m2), bsl,i−1 is the

amount of bacteria present in soil solution on day i−1 (CFU/m2), µsl is the overall rate

constant for die-off/re-growth of bacteria in soil solution (1/day), and bmin is the minimum

daily loss of bacteria, which was maintained at the default value of zero. The leaching of

bacteria in soil solution in the top 10 mm into the first soil layer is

bperc =
bsl ·wps

10 ·ρb ·d · kbp
(3.23)
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where bperc is the amount of bacteria transported from the top 10 mm into the first soil layer

(CFU/m2), bsl is the amount of bacteria present in soil solution (CFU/m2), wps is the

amount of water percolating to the first soil layer from the top 10 mm on a given day (mm

H2O), ρb is the bulk density of the top 10 mm (Mg/m3) (assumed to be equivalent to bulk

density of first soil layer), d is the depth of the “surface” layer (10 mm), and kbp is the

bacteria percolation coefficient (10 m3/Mg). The amount of bacteria in the soil solution

transported in surface runoff is

bsro =
bsl ·QCN

ρb ·d · kbs
(3.24)

where bsro is the amount of bacteria lost in surface runoff (CFU/m2), bsl is the amount of

bacteria present in soil solution (CFU/m2), QCN is the amount of surface runoff calculated

by the CN method on a given day (mm H2O), and kbs is the bacteria soil partitioning

coefficient (m3/Mg). The amount of bacteria transported to the stream via attachment to soil

particles is calculated by

bsed = 0.0001 · csed ·
ysed

A
· ε (3.25)

where bsed is the amount of bacteria transported with sediment in surface runoff (CFU/m2),

csed is the concentration of bacteria attached to sediment in the top 10 mm (CFU/metric ton

soil), ysed is the sediment yield on a given day (metric tons), A is the HRU area (ha), and ε is

the bacteria enrichment ratio. The concentration of bacteria in the sediment is determined by

csed = 1000 · bsb

ρb ·d
(3.26)
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where bsb is the amount of persistent bacteria sorbed to the soil (CFU/m2). When the time

of concentration in a watershed is greater than one day, the bacteria load in the surface

runoff is used to estimate the bacteria released to the main channel by:

bsro = (b�sro +bsros,i−1) ·
�

1− exp
�
−CL

tc

��
(3.27)

bsed = (b�sed +bseds,i−1) ·
�

1− exp
�
−CL

tc

��
(3.28)

where bsro is the amount of persistent bacteria discharged to the main channel in surface

runoff on a given day (CFU/m2), b�sro is the amount of surface runoff persistent bacteria

generated in the HRU on a given day (CFU/m2), bsros,i−1 is the surface runoff persistent

bacteria stored or lagged from the previous day (CFU/m2), bsed is the amount of

sediment-attached persistent bacteria discharged to the main channel in surface runoff on a

given day (CFU/m2), b�sed is the amount of sediment-attached persistent bacteria generated

in the HRU on a given day (CFU/m2), bseds,i−1 is the sediment-attached persistent bacteria

stored or lagged from the previous day (CFU/m2), CL is the surface runoff lag coefficient,

and tc is the time of concentration for the HRU (hrs.). The die-off relationship for bacteria

in stream reaches and reservoirs is calculated using the first-order decay function

bw,i = bw,i−1 · exp(−µw) (3.29)

where bw,i is the amount of bacteria present in the water body (reach or reservoir) on day i

(CFU/100mL), bw,i−1 is the amount of bacteria present in the water body on day i−1

(CFU/100mL), and µw is the rate constant for die-off of bacteria in the water body (1/day).
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3.2.3 The CC Model

The Characteristic Concentration (CC) model (Chin, 2011a) combines the principles of

hydrograph separation with the concept of event mean concentration (EMC) which assumes

that the runoff contaminant loading is linearly proportional to the runoff volume. The CC

model therefore models bacteria by assigning a (constant) characteristic bacteria

concentration to the runoff and a separate characteristic concentration to the baseflow.

Whereas the EMC approach has been used primarily in urban watersheds, the application of

the concept to bacteria modeling in agricultural areas is new, and preliminary studies have

shown promising results (Chin, 2011a; Chin, 2011b). The model makes no assumptions

about terrestrial loadings or micro-scale processes like washoff or adsorption, but rather

quantifies the contributions of runoff and baseflow processes to in-stream concentrations.

In the CC model, the model-predicted in-stream bacteria concentration, c(t), is calculated

using the relation (Chin, 2011b):

lnc(t) = qr(t) lncr +[1−qr(t)] lncb + ε(0,σ) (3.30)

where qr is the surface-runoff fraction of the streamflow, cr and cb are the (constant)

characteristic concentrations associated with runoff and baseflow, respectively, and ε is a

Gaussian random variable with a mean of zero and a standard deviation of σ, where σ is the

standard error of fitting a straight line to a plot of lnc versus qr derived from concentration

and streamflow measurements. The geometric mean, CG, of N concentration measurements

is then

CG = c�qr�N
r c�1−qr�N

b 10ε(0,σ/
√

N) (3.31)
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where �qr�N is the average of qr(t) over N measurements, and it is the calculated CG values

that are used as model predictions to compare with the observed log-concentrations.

The surface-runoff and baseflow portions of the streamflow are estimated using the three

hydrograph separation methods of the USGS HYSEP computer program (Sloto and Crouse

1996). The three techniques are named the fixed interval (FI), the sliding interval (SI), and

the local minimum (LM) methods, and are based on the duration of surface runoff

calculated as

D = A0.2 (3.32)

where D is the number of days after which surface runoff stops, and A is the drainage area

in mi2. An interval “2d∗” is defined as the odd integer between 3 and 11 days nearest to 2D.

The fixed-interval method assigns the lowest discharge in each 2D∗ interval to all days in

that interval. The sliding-interval method finds the lowest discharge in one half the

2D∗-interval-minus-one-day before and after the day being considered and assigns it to that

day. The local minimum method examines each day to see if it is the lowest discharge in

one half the 2D∗-interval-minus-one-day before and after the current day. If it is, then it is a

local (discharge) minimum and it is connected to adjacent local minimums by straight lines,

from which the baseflow values on each day between local minimums are interpolated. In

the context of pollutant transport via surface runoff, it is worth noting that of the three

methods, the LM method produces the lowest baseflow ratios and therefore highest runoff

quantities.
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Model Calibration

4.1 BACKGROUND

Calibration is the process of adjusting model parameters to minimize the error between

measurements and model predictions. Model errors occur because of model predictive

uncertainty, which is a combination of model structural uncertainty, parameter uncertainty,

and data uncertainty. Structural uncertainty is a result of an imperfect understanding of

natural processes as well as the extrapolation of relationships developed in a controlled

laboratory environment or at a plot-scale to watershed-scale applications. These

shortcomings result in a model structural code built on imperfect process equations.

Parameter uncertainty results from the model’s use of constant values to represent

properties over large areas that, realistically, may be scale dependent and change in space

and time. Parameter uncertainty also results from determining the values of parameters in

certain process equations that mathematically require variables with no physical meaning.

Data uncertainty results from errors in measuring and recording the data used in calibrating

the model and as an input to the model. All things considered, structural uncertainty tends

to be the dominant source of uncertainty. Probabilistic methods are used to quantify

38
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uncertainty and model results are typically presented with confidence bounds such as a 95%

confidence interval (e.g., Vrugt et al. 2003, Abbaspour et al. 2007).

The topic of calibration is common in the environmental modeling literature, and numerous

techniques, programs, and methodologies have been developed. Some examples are SCE

(Duan et al. 1992), GLUE ( Beven and Binley 1992; Franks and Beven 1997; Blasone et al.

2008; Beven 2006), SCEM-UA (Vrugt et al. 2003; Blasone et al. 2008), DDS (Tolson and

Shoemaker 2007), and GML (Skahill and Doherty 2006). However, despite the copious

amount of literature addressing calibration, the topic is still highly contested (e.g. Mantovan

and Todini 2006; Beven et al. 2007; Mantovan et al. 2007). Although a universally accepted

methodology for calibration does not exist, a perusal of the relevant literature reveals four

key concepts common to most calibration approaches:

Identification of sensitive parameters. Since most models have many parameters,

sometimes many dozen parameters, a group of sensitive parameters are typically selected

for calibration. Changes in the sensitive parameters more predominantly affect the model

output than do changes in the other parameters, and the less-sensitive parameters are

considered negligible in the calibration process and are typically held constant at default

values. Included with the selection of sensitive parameters is usually a stipulation of the

parameter space to be explored in the calibration of each parameter (e.g. Jia and Culver

2008), where the parameter space can be the entire range allowed for that parameter within

the model framework or a refined sub-region of the space selected due to prior knowledge

of the parameter. Examples of modeling studies which have identified sensitive parameters

and corresponding parameter space search ranges are Doherty and Johnston (2003) and

Skahill et al. (2009) in HSPF, Cho et al. (2010) and Glavan et al. (2011) in SWAT, and

Singh et al. (2005) in both HSPF and SWAT.

Selection of Objective Function. Objective functions (OFs) are used to determine how

well the output of a given parameterization of a model fits the data (e.g. Moriasi et al. 2007;
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Legates and McCabe 1999). While the use of multiple OFs in the calibration of model

parameters generally uses more of the information inherent in a data set and prevents the

parameter estimates from focusing disproportionally on one component of the model (Haan

1989), the choice of OF(s) is critical as different OFs will likely generate different

calibrated parameter sets (e.g. Al-Abed and Whiteley 2002; Yilmaz et al. 2010), and

sometimes the use of a single OF is appropriate. Most OFs employ a least-squares

technique between the observations and model predictions (e.g. Chin 2009; Legates and

McCabe 1999; Troutman 1985; Brion et al. 2002; Brion and Lingireddy 2003). A

least-squares approach is advantageous, since the error that results from the difference

between observations and model predictions inherently incorporates the components of

model structural uncertainty, parameter uncertainty, and data uncertainty (Hantush and

Kalin 2008). OFs in hydrological studies commonly match average streamflows or volumes

at various time steps, such as daily or monthly average streamflows or monthly or yearly

flow volumes (e.g. Singh et al. 2005; Feyereisen et al. 2007). Log-transformation of data

and model output may be used to minimize the effect of peaks in the data. A simple

example of a multiple-OF weighting scheme is described by Haan (1989) as

Wp = w1 ∑e2
1 +w2 ∑e2

2 + ... (4.1)

where Wp is the weighted prediction, the subscripts refer to different objectives, w is a

weight and e is the error.

Establishing a Default System State. Since several calibration trials are often required to

calibrate or analyze a system (e.g. Duan et al. 1992; Doherty and Johnston 2003), a default

starting state is required to objectively evaluate the success of each trial. A default starting

state guarantees that all trials begin on an equal playing field and allows the use of different

starting points for different trials. This is advantageous because different starting points
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often yield different end points, since the trials likely followed various paths or trajectories

through the parameter space en route to the final calibrated parameter set (Beven 2006;

Skahill et al. 2009). The selection of starting point is particularly important, as a starting

point near optimal values of the system may drastically reduce calibration computational

time and overall provide a more efficient calibration (Skahill et al. 2009; Yang et al. 2007;

Al-Abed and Whiteley 2002). The establishment of a default starting state is important for

both manual and automated calibration methods.

Interpretation and Implementation of Calibrated Parameters. Two discussions of

calibration philosophy commonly arise in the interpretation and implementation of

calibrated parameter sets. The first discussion revolves around whether a single, optimal

parameter set really exists or whether there are more than one (possibly many) parameter

sets that achieve the same “optimal” model calibration. A conceptual analogy of the

discussion is whether the parameter space has a corresponding likelihood/probability

surface with a single (maximum) peak or one with multiple equal peaks. (Conversely, if the

calibration goal is to minimize an objective function instead of maximize a likelihood

function, the analogy is of a bowl with a single low point or of one with several basins with

low points of equal depth (e.g. Skahill and Doherty 2006)). On one hand, researchers and

modelers insist, perhaps idealistically, that a single optimal set can be found (Beven 2006;

Journel 1997). On the other hand, most modeling studies acknowledge that as a given

model increases in complexity and parameterization, that parameter correlation and

interaction also increases, where “correlation is the term used to describe the phenomenon

whereby two or more parameters can be varied in harmony in such a way as to have

virtually no effect on the calibration objective function” (Doherty and Johnston 2003). The

net effect of correlation is multiple parameter sets that achieve the same level of objectivity

(e.g. Duan et al. 1992; Troutman 1985; Beven 2006; Al-Abed and Whiteley 2002; Skahill

et al. 2009; Jia and Culver 2008). Conceptually, the parameter space would have a region of

higher likelihood than other regions, but the high region of the likelihood surface would be
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flat and broad instead of a well-defined peak. Vrugt et al. (2003) explain that “Most likely, a

search conducted on the feasible parameter space close to the global optimum will reveal

many behavioral parameter sets with quite similar performance in reproducing the observed

data.” Doherty and Johnston (2003) add that “Calibration of a model such as HSPF can

rarely be achieved without at least some degree of nonuniqueness in the estimated

parameters”. This latter take on the discussion is championed by the Generalized

Likelihood Uncertainty Estimation (GLUE) methodology (Beven and Binley 1992), which

supports the concept of equifinality, where it is acknowledged that model, parameter, and

data uncertainties prevent the identification of a single optimal parameter set. Blasone et al.

(2008) explain that “the GLUE approach calls for rejecting the concept of a unique global

optimum parameter set within some particular model structure, instead recognizing the

acceptability, within a model structure, of different parameter sets that are similarly good in

producing fit model predictions.” One way of reducing the effect of correlation is by

removing one or more of the correlated parameters from the calibration process and instead

holding them at constant values (Troutman 1985).

The second discussion revolves around whether parameter estimates should be considered

as physically realistic or not. Some modeling studies place noteworthy emphasis on

deriving and using parameters with realistic ranges and values (e.g. Al-Abed and Whiteley

2002; Feyereisen et al. 2008; Glavan et al. 2011). However, an inconsistency with this

viewpoint arises when equifinality in a model yields more than one parameter set that

achieve the same level of model optimization while using parameterizations that reflect

different physical processes (e.g. Jia and Culver 2008). In such a case it is clear that model

uncertainty is too prohibitive to derive any physically realistic meaning out of the

parameters that optimize the model. The modeler is then presented with a problem of

‘decidability’ (Beven 2006), where a decision must be made about which parameter set to

use for the calibrated model, even if it means selecting a parameter set that is not realistic

but provides the best model fit to the data. Troutman (1985) expresses the sentiment that if a
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physically-realistic parameterization of a physically-based model yields predictions that

match the data, then the model is acceptably deterministic, but “if a calibrationlike

definition of the parameters gives values that are totally at odds with what one would expect

physically, then the model probably is less deterministic than we would like to believe, and

it makes no sense to expect to be able to use physically realistic parameter values in it and

obtain decent runoff predictions in the first place.”

In summary, Al-Abed and Whiteley (2002) appropriately comment that “when a model has

a large number of parameters that need calibration, when the connection of these parameter

values to physical processes is not straightforward, and when parameters are strongly

interrelated, successful completion of a calibration exercise is a real challenge.”

4.2 IMPLEMENTATION

Based on previous studies (Van Liew et al. 2003; Chin et al. 2009), the sensitive parameters

governing the hydrology and bacteria processes in HSPF and SWAT were selected for

calibration. These parameters are listed with a brief description in Tables 4.1 and 4.2 along

with the total parameter ranges as defined by the upper and lower limits in HSPF and

SWAT. Select regions of the total ranges were examined in this study, and these refined

ranges are also shown in Tables 4.1 and 4.2. The refined ranges are a combination of values

recommended in the literature and values determined heuristically.

The key HSPF hydrology parameters used in model calibration were: INFILT, the

parameter describing infiltration capacity of the soil (Eq. 3.1); LZSN, the nominal storage

in the lower zone (Eq. 3.1); INFILD, the ratio of maximum to mean infiltration capacity

over the land segment (Eq. 3.2); INFEXP, an exponent in the infiltration equation (Eq. 3.1);

UZSN, the nominal storage in the upper zone; DEEPFR, the fraction of groundwater inflow

which enters the deep (inactive) groundwater; AGWRC, the basic groundwater recession

rate if KVARY is zero and there is no inflow to groundwater (Eq. 3.9); IRC, the ratio of
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present rate of interflow outflow to the value 24 hours earlier, if there was no inflow (Eqs.

3.6-3.7); KVARY, a parameter which affects the behavior of groundwater recession flow,

enabling it to be non-exponential in its decay with time (Eq. 3.8); INTFW, the interflow

inflow parameter (Eq. 3.4); and KS, a weighting factor for hydraulic routing. The key HSPF

water-quality parameters used in model calibration were: FSTDEC, the in-stream first-order

decay rate (Eq. 3.12); ACQOP, the land accumulation of bacteria (Eq. 3.10); WSQOP, the

parameter relating land accumulation to concentrations in washoff, defined as the rate of

surface runoff that removes 90% of the accumulated bacteria in one hour (Eq. 3.11); IOQC,

the concentration of bacteria in interflow; and PSRC, a custom input to HSPF as a mass flux

from a direct source into the receiving stream.

The key SWAT hydrology parameters used in model calibration were: CN2, the NRCS

runoff curve number for moisture condition II (Eq. 3.14); GW REVAP- the revap

coefficient governing the maximum amount of water that will be removed from the aquifer

via ‘revap’ on a given day (Eq. 3.21); REVAPMN, a threshold water level in the shallow

aquifer for revap to occur, such that revap only occurs when the water level is above the

threshold; GWQMN, a threshold water level in the shallow aquifer for base flow to occur,

such that groundwater contributes to the main channel only when the water level is above

the threshold (Eq. 3.19); RCHRG DP, a percolation coefficient governing the amount of

water moving from the shallow aquifer to the deep aquifer on a given day (Eq. 3.18);

ALPHA BF, the baseflow recession constant (Eq. 3.19). Values vary from 0.1-0.3 for land

with slow response to recharge to 0.9-1.0 for land with a rapid response; GW DELAY, the

delay time or drainage time for aquifer recharge, to account for the lag that may occur

between the time that water exits the soil profile and enters the shallow aquifer as a result of

geologic properties and the depth of the water table (Eq. 3.17); CH K(2), effective

hydraulic conductivity of the channel; CH N(2), Manning’s “n” value for the main channel.
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The key SWAT water-quality parameters used in model calibration were: CFRT KG, the

land application rates of manure; BACTMIX, the bacteria percolation coefficient (Eq. 3.23);

BACTKDQ, the bacteria soil partitioning coefficient (Eq. 3.24); WDPRCH and WDPQ, the

die-off coefficients for in-stream and soil solution bacteria, respectively (Eq. 3.29); and

BCNST, a custom input to SWAT as a direct NPS flux concentration. In SWAT, BACTMIX

affects the leaching of bacteria in the soil solution to lower soil layers, such that as

BACTMIX increases, the leaching to lower soil levels decreases, and vice-versa. Similarly,

BACTKDQ affects the transport via surface runoff of bacteria in soil solution, such that as

BACTKDQ increases, the amount of soil solution bacteria transported in runoff decreases,

and vice-versa. BACTKDQ can be thought of as the ratio of concentrations of bacteria in

the soil solution of the surface 10 mm to the surface runoff.

The HSPF models were built to model the fate and transport of bacteria in overland flow

and interflow (concentrations in groundwater and sediment were not considered), where

bacteria deposition was applied directly to the land surfaces. The SWAT models only

considered persistent bacteria and used a washoff factor of 1.0 so that all bacteria deposited

on foliage are washed off. Bacteria die-off was only considered in the soil solution phase.

For the purposes of facilitating the manure application in the model, the manure was

assigned as beef manure with a bacteria density of 105 CFU/g. Impervious areas were

absent or minimal in the study areas.

4.3 THEORY

Calibration of the HSPF and SWAT models was done using the sensitive parameters as

listed in Tables 4.1 and 4.2. The models were first calibrated for hydrology, then for water

quality. The following single objective function (OF) was used for the hydrology calibration
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LH

�
y|θi, θ̂ j �=i

�
=

1
SN

N

∏
i=1

exp
�−1

2S2 (yi−mi)2
�

(4.2)

where LH is the conditional likelihood for hydrology parameter θi, y is the set of N

measured data (i.e. average daily flows), θi is the value of the parameter being varied, θ̂ j �=i

is the set of values of the other parameters being held constant, and S is the standard

deviation of the measurements (yi) relative to the model predictions (mi) and is given by

S =

�
1

N−1

N

∑
i=1

(yi−mi)2 (4.3)

While some hydrological studies calibrate with multiple OFs that examine weekly, monthly,

and/or yearly flow and volumes (e.g., Jia and Culver 2008; Doherty and Johnston 2003;

Al-Abed and Whiteley 2002; Haan 1989), the use of a single, daily-based OF in this case is

justified because of its use in a bacteria model, where a daily time step is more consistent

with bacterial dynamics than larger time steps. The Nash-Sutcliffe Efficiency (NSE) (Nash

and Sutcliffe, 1970) was the metric used to measure model accuracy, and is described by

NSE = 1− ∑N
i=1[yi−mi]2

∑N
i=1[yi− ȳ]2

(4.4)

where N, yi, and mi are previously defined and ȳ is the mean of the measurements. While the

NSE is one of the most common statistics used in hydrological modeling (e.g. Feyereisen et

al. 2007a; Arnold et al. 2010; Eckhardt et al. 2003; Paul et al. 2004; Laroche et al. 1996;

Chin et al. 2009; Moriasi et al. 2007; Gupta and Kling 2011), it may be sensitive to

extremely large values (Legates and McCabe 1999; Chin et al. 2009). One way of reducing

the effect of large values is by log-transforming the data and the model predictions.
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Since bacteria concentrations are commonly observed to be lognormal (e.g., USEPA 2001;

Wilkinson et al. 1995), the water quality calibration was similarly performed using the

following objective function:

LWQ

�
y|θi, θ̂ j �=i

�
=

1
SN

ln

N

∏
i=1

exp
� −1

2S2
ln

(lnyi− lnmi)2
�

(4.5)

where LWQ is the conditional likelihood for water quality parameter θi, y is the set of N

measured data (FC data), θi is the parameter being varied, θ̂ j �=i is the set of values of the

other parameters being held constant, and Sln is the standard deviation of the log of the

measurements (lnyi) relative to the log of the model predictions (lnmi) and is given by

Sln =

�
1

N−1

N

∑
i=1

(lnyi− lnmi)2 (4.6)

where all terms are previously defined. Log-scaled NSE values (NSEln) were calculated

according to

NSEln = 1− ∑N
i=1[lnyi− lnmi]2

∑N
i=1[lnyi− ln ȳ]2

(4.7)

To assess the assumption of normal residuals required by the preceding likelihood

equations, the Shapiro-Wilk statistic (Shapiro and Wilk 1965) was used, and normality was

assessed at the 95-percent confidence limit.

4.4 PROCEDURE

The calibration procedure used was a response-surface iterative scheme that searches the

parameter space looking for regions of highest likelihood. The algorithm is detailed in Chin
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(2009) and is repeated here verbatim with permission. For a water-quality model with p

parameters, θ1, ..., θp and evaluation of the model at n discrete values of each parameter in

the defined parameter space, the procedure is:

STEP 1: Initialize the parameter vector as θ(1,1)=[θ1,θ
(0)
2 , ...,θ(0)

p ]T where the “(1,1)”

superscript for θ indicates the first iteration on the first parameter (θ1), and the “(0)”

superscript for θi indicates that θi is held constant at its initial (zero-iteration) value. The

conditional likelihood function for θi is calculated using the relation

L(θ1|θ
(0)
2 , ...,θ(0)

p ,y,λ) =
1

σN exp
�
− 1

2σ2

N

∑
i=1

[zi−g(λ)
i (θ(1,1))]2yλ−1

i

�
(4.8)

The maximum-likelihood value of θ1 is determined from the conditional likelihood

function and is denoted by θ(1,∗)
1 .

STEP 2: Update the parameter vector to θ(1,2)=[θ(1,∗)
1 ,θ2,θ

(0)
3 , ...,θ(0)

p ]T and calculate the

conditional likelihood function for θ2 using the relation

L(θ2|θ
(1,∗)
1 ,θ(0)

3 , ...,θ(0)
p ,y,λ) =

1
σN exp

�
− 1

2σ2

N

∑
i=1

[zi−g(λ)
i (θ(1,2))]2yλ−1

i

�
(4.9)

The maximum-likelihood value of θ2 is determined from the conditional likelihood

function and is denoted by θ(1,∗)
2 .

STEP 3: Repeat Step 2 for all parameters to complete the first iteration which ends with

taking the parameter vector as θ(1,p)=[θ(1,∗)
1 , ...,θ(1,∗)

p−1 ,θp]T and calculating the conditional

likelihood function for θp using

L(θp|θ(1,∗)
1 , ...,θ(1,∗)

p−1 ,θp,y,λ) =
1

σN exp
�
− 1

2σ2

N

∑
i=1

[zi−g(λ)
i (θ(1,p))]2yλ−1

i

�
(4.10)
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STEP 4: Start the second iteration by taking the parameter vector as

θ(1,2)=[θ1,θ
(1,∗)
2 , ...,θ(1,∗)

p ]T where the “(1,*)” superscript for θi indicates that θi is held

constant at its first-iteration maximum-likelihood value. The conditional likelihood function

for θi is calculated using the relation

L(θ1|θ
(1,∗)
2 , ...,θ(1,∗)

p ,y,λ) =
1

σN exp
�
− 1

2σ2

N

∑
i=1

[zi−g(λ)
i (θ(1,2))]2yλ−1

i

�
(4.11)

STEP 5: Repeat Step 4 for all parameters to complete the second iteration, which ends with

taking the parameter vector as θ(2,p)=[θ(2,∗)
1 , ...,θ(2,∗)

p−1 ,θp]T and calculating the conditional

likelihood function for θp using

L(θp|θ(2,∗)
1 , ...,θ(2,∗)

p−1 ,θp,y,λ) =
1

σN exp
�
− 1

2σ2

N

∑
i=1

[zi−g(λ)
i (θ(2,p))]2yλ−1

i

�
(4.12)

STEP 6: Repeat the iterations described by Steps 4 and 5 until the conditional likelihood

function converges to its asymptotic value. The j-th iteration ends with the parameter vector

given as θ(2,p)=[θ(2,∗)
1 , ...,θ( j,∗)

p−1 ,θp]T and the conditional likelihood function for θp is given

by

L(θp|θ( j,∗)
1 , ...,θ( j,∗)

p−1 ,θp,y,λ) =
1

σN exp
�
− 1

2σ2

N

∑
i=1

[zi−g(λ)
i (θ( j,p))]2yλ−1

i

�
(4.13)

The final iteration cycle provides the maximal conditional likelihood function of all the

parameters, where the maximal conditional likelihood function for each parameter is

defined as the likelihood function for that parameter conditioned on the other parameters

being at their maximum-likelihood values. For example, the maximal conditional likelihood

function of θp is given by Equation 4.13.
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4.5 COMPUTATIONAL DETAILS

The implementation of the calibration algorithm utilizes a system of inner and outer loops,

where the outer loop represents the P sensitive parameters and the inner loop searches the

designated parameter space of an individual parameter. Starting with default parameter

values and the parameter ranges listed in Tables 4.1 and 4.2, the inner loop divides the initial

parameter range of the first parameter in the outer loop into N equally spaced divisions by

evaluating N+1 model runs, while all other parameters are held at default values. At each

model run, the corresponding conditional likelihood is determined, and after N+1 model

runs, the parameter is set to the value that generated the highest (conditional) likelihood.

The parameter range of the evaluated parameter is then refined to focus sequential searches

in the region of highest likelihood. The outer loop then increments to the next parameter in

sequence, and the process is repeated: the inner loop divides the initial parameter space of

the second parameter into N equally spaced divisions (N+1 model runs) and the

corresponding conditional likelihoods are evaluated, the parameter is set to the value of the

N+1 model runs that generated the highest likelihood, the parameter range is refined to

focus sequential iterations of that parameter in the region of highest likelihood, and the

outer loop is incremented to the next parameter. The process of searching the parameter

space, identifying parameter values of highest likelihood, and refining the parameter space

for future runs is repeated for the P parameters until a parameter convergence threshold is

reached or a maximum of M iterations through the outer loop has occurred.

A Matlab code was developed to automate the calibration of the P sensitive parameters in

HSPF (11 hydrology, 6 WQ) and SWAT (10 hydrology, 7 WQ). In all cases, a burn-in

period of length 2P outer-loop increments was established, where at the end of the inner

loop of these iterations the parameter space was not refined but was re-established as the

initial parameter range. This was shown to improve overall calibration results and

efficiency, guaranteeing that the first two passes of each parameter were not too affected by



www.manaraa.com

53

default values. N was set to 20 divisions (21 model runs) for the first seven complete

outer-loop increments (7P) in both HSPF models and the SWAT hydrology model and the

first ten outer-loop increments (10P) in the SWAT WQ model, and (N) was reduced to six

(seven model runs) for the remainder of the calibration, if necessary. In most cases it was

found that seven passes through each parameter sufficiently refined the parameter search

space for each of the P parameters, and the reduction of N aided in final convergence and

greatly reduced computational time. If, during an intermediary inner loop, the parameter

value generating the highest likelihood was found to be at the limit of the refined parameter

range (but not at an upper or lower limit of the considered parameter space as listed in

Tables 4.1-4.2), the parameter range of that parameter was broadened for the next outer

loop iteration of that parameter.

On an Intel Core 2, 2.4 GHz PC, a single model run of HSPF and SWAT took approximately

2.5 and 0.75 seconds, respectively, and a single outer loop of 21 model evaluations

(including likelihood calculations) took approximately 140 and 25 seconds in HSPF and

SWAT, respectively. For the hydrology calibrations, the outer-loop exit limit M was set to

201, so that in cases where the model parameters did not converge, a maximum of [(21

model runs)×(77 outer loop increments)+(7 model runs)×(201-77 outer loop increments)]

= 2,485 total model runs in HSPF and [(21 model runs)×(70 outer loop increments)+(7

model runs)×(201-70 outer loop increments)] = 2,387 model runs in SWAT. In cases when

the models did not converge, reaching M = 201 took roughly 6 hours for HSPF and 40

minutes for SWAT. For the water quality calibrations, M was set to 101 in HSPF and 151 in

SWAT, due to both models having fewer parameters for water quality than for hydrology,

and because the simulation in SWAT was less time-intensive. Additionally the threshold for

switching from N = 21 to N = 7 in SWAT was done after 10P increments of the outer loop.

In cases when the model parameters did not converge, a maximum of [(21 model runs)*(42

outer loop increments)+(7 model runs)*(101- 42 outer loop increments)] = 1,295 total

model runs occurred in HSPF and [(21 model runs)*(70 outer loop increments)+(7 model
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runs)*(151-70 outer loop increments)] = 2,037 model runs occurred in SWAT. While the

calibration method described here is temporally and computationally intensive, it is not

uncommon for the calibration of a model to require thousands of model evaluations. For

example, Franks and Beven (1997) and Eckhardt et al. (2003) used at least 10,000 model

evaluations to sample the parameter space for the calibration of their models, while Skahill

and Doherty (2006) used a calibration scheme that required about 52,000 model evaluations

and took almost 2.5 days to complete. The study by Razavi et al. (2010) specifically

examines ways of improving the computational efficiency of automatic calibration methods.

It was found in many cases in both HSPF and SWAT that starting the automated calibration

with different parameters often yielded different calibration results. In other words, from

the established default starting state of the system at the beginning of the procedure,

selecting different parameters as the starting point would yield different calibrated

parameter sets. This behavior was found true in both the hydrology and water-quality

calibrations. For example, it was found that starting the hydrology calibration of HSPF in

Catchment J with the parameter UZSN, then proceeding in turn to DEEPFR, AGWRC, etc.,

as listed in Table 4.1 yielded a different calibrated parameter set with higher NSED than

starting the calibration with parameter KS and proceeding to INFILT, LZSN, etc. Similarly

in SWAT, it was found that starting the hydrology calibration in Catchment I with the

parameter CH K(2), then proceeding in turn to CH N(2), CN2 Ag, etc., as listed in Table

4.2, yielded a different calibrated parameter set with higher NSED than starting the

calibration with parameter CN2 For and proceeding to GW REVAP, GWQMN, etc.

Implementing the burn-in loop helped reduce this dependence on starting point and overall

provided consistently better results. But the burn-in loop did not eliminate the relationship

between starting parameter and final calibration result. To ensure that the most optimal

parameter set (and therefore highest NSED) was determined, an automated calibration was

conducted from a default state for each model in each catchment, using each parameter as a

starting point and proceeding in the order shown in Tables 4.1 and 4.2. So 11 automated
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hydrology calibrations in HSPF and 10 automated hydrology calibrations in SWAT were

conducted in each catchment. It was generally found that most (not all) of the calibration

attempts, aided by the burn-in loop, converged to a similar region of maximum likelihood

and parameter values. As explained earlier (under the subheading “Interpretation and

Implementation of Calibrated Parameters”) this behavior is indicative of both a

single-peaked yet broad and flat likelihood surface, as well as parameter correlation that

leads to non-unique parameter sets in the region near the peak. The hydrology parameter set

in each model in each catchment that yielded the highest NSED was used as the hydrology

component in the corresponding water-quality model. Then, using the optimal hydrology

parameter sets, 6 automated water-quality calibrations in HSPF and 7 automated

water-quality calibrations in SWAT were conducted in each catchment.
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Chapter 5

A Multi-Model, Multiple Watershed
Examination of In-Stream Bacteria
Modeling

5.1 BACKGROUND

HSPF and SWAT are considered state-of-the-art watershed models (Van Liew et al. 2003).

Perhaps more importantly, the models have a stamp of approval from the EPA (HSPF) and

the USDA (SWAT), signifying that despite their limitations the models are and will be

considered as standards in environmental modeling. The influence and importance of these

models reaches beyond domestic borders as studies using the models have been carried out

in countries such as China (Yang et al. 2007), Canada (Al-Abed and Whiteley 2002;

Laroche et al. 1996), South Korea (Lee et al. 2010), Mexico (LaWare and Rifai 2006),

Ireland (Coffey et al. 2010), France (Bougeard et al. 2011; Baffaut and Sadeghi 2010),

Switzerland (Abbaspour et al. 2007), and the UK (Glavan et al. 2011).

Although the models are widely used and receive government backing, they represent two

very different formulations of the physical world. In the context of bacteria modeling the

most notable differences are: the hourly time resolution in HSPF vs. the daily time

resolution in SWAT; the division of watershed area into pervious and impervious segments

56
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in HSPF vs. the division of area into HRUs based on soil type and land use in SWAT; the

generic water-quality component in HSPF vs. the bacteria-specific water-quality component

in SWAT; the existence of bacteria concentrations in subsurface waters in HSPF vs. the

assumption that bacteria concentrations in subsurface waters are zero in SWAT; and the

surface layer, upper zone, lower zone, and groundwater layer watershed structure in HSPF

vs. the shallow and deep aquifer subbasin structure in SWAT. In light of these differences it

is fair to assume that the models will perform differently given the same location and data.

This chapter presents the primary HSPF and SWAT models in the LREW that are the basis

of the research in this dissertation and provides an analysis of the model performance.

The CC model is included for comparison with the other two models. Although the CC

model has a much simpler formulation than HSPF and SWAT, it has two major advantages

over the other models. First, it uses measured streamflow data instead of a modeled

hydrological component. Using the data eliminates the significant model uncertainty that

results from imperfect hydrologic process equations and the use of numerous hydrological

parameters. In using the streamflow data, the daily hydrology NSE of the CC model is

guaranteed to be 1.00. Second, the 2-parameter water-quality component of the CC model

is conceptually simple, induces much less parameter uncertainty or risk of parameter

correlation than HSPF and SWAT, and is easily calibrated.

The HSPF, SWAT, and CC models were developed for the LREW as described in Section

3.1. The HSPF and SWAT models were calibrated as described in Chapter 4. Since the CC

model only has two parameters, a simple least-squares calibration routine was implemented

to find values of cr and cb that maximize the NSEln (Eq. 4.7). The results presented are for

the calibrated models; validation and forecasting of the models were not considered. While

validation is normally an important aspect of a modeling effort, two factors led to the

consideration of only the calibrated models. First, the FC datasets were sufficiently limited

to further divide into a set for calibration and a set for validation, so the whole dataset was
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used for calibration. Secondly, when calibration and validation phases are conducted for a

model, the calibrated models typically achieve the best performance (e.g. NSEln) and the

results presented are from the calibrated models. This fact is true in the previous work in the

LREW, where the majority of the results were based on the calibrated versions of the

models (e.g. Feyereisen et al. 2007; White et al. 2009; Chin et al. 2009; Sakura-Lemessy

2009). Since this study was an examination of the model performance, and since the

previous work in the LREW was presented for calibrated models, the calibrated models

were only considered here.

5.2 RESULTS AND DISCUSSION

5.2.1 HSPF and SWAT Hydrology Calibration Results

The calibrated maximum likelihood (ML) parameters of the HSPF and SWAT hydrology

models are shown in Tables 5.1 and 5.2. It is apparent that for each model there is little

Table 5.1: HSPF hydrology calibration results

Parameter Units Default* Catchment
I J K O

INFILT mm/hr 2.54 7.16 5.62 1.78 2.17
LZSN cm 15.2 1.12 0.864 3.99 6.86

INFILD – 1.91 1.80 1.70 2.00 1.03
INFEXP – 2.00 3.49 3.05 1.02 2.48
UZSN cm 2.82 8.10 8.36 7.82 4.75

DEEPFR – 0.100 0.269 0.219 0 0.260
AGWRC 1/d 0.980 0.974 0.987 0.972 0.958

IRC 1/d 0.500 0.415 0.400 0.373 0.235
KVARY 1/cm 0 0 0.258 0.180 0.223
INTFW – 0.750 15.0 15.0 5.72 5.78

KS – 0.50 0 0 0 0
* Note: slight variations of some default values occurred across catchments

consistency among calibrated parameter values between catchments. It is not uncommon

for models of nearby watersheds to have different parameterizations (e.g. Laroche et al.

1996) and this behavior has been well documented in the LREW (Feyereisen et al. 2007). It
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Table 5.2: SWAT hydrology calibration results

Parameter Units Default* Catchment
I J K O

CN2 AG – 77 52 35 35 64
CN2 FOR – 55 77 69 70 78

GW REVAP – 0.020 0.362 0.933 0.437 0.230
REVAPMN mm 1.00 0.670 0 0 0.134
GWQMN mm 0.000 20.0 20.0 20.0 17.5

RCHRG DP – 0.050 0 0.135 0 0.288
ALPHA BF d 0.048 0.516 0.642 0.658 0.572
GW DELAY d 31.0 29.5 0.750 21.5 18.8

CH K(2) mm/hr 0 300 300 218 185
CH N(2) – 0.014 0.300 0.129 0.037 0.031

*Note: slight variations of some default values occurred across catchments

is important to remember that these parameterizations maximize the model output relative

to average daily streamflow, and that it might not be possible to derive consistent or

physically realistic conclusions from the parameter relationships shown.

Nonetheless, there are several noteworthy items in the calibrated hydrology parameters. The

HSPF parameter INFILD (Eq. 3.2) calibrated to 2.00 in Catchment K. INFILD is an

important parameter in defining the relationship of Lines 1 and 2 in Figure 3.2 but has an

HSPF-defined upper limit of 2.00, signifying that the maximum infiltration can never be

twice as large as the mean infiltration. Yet in Catchment K, if allowed, the parameter would

have gone above 2.00 in an attempt to better fit the daily streamflow. In running several

calibration attempts on different pervious land segments Lowe (2004) found the median

value of INFILD was 2.00, indicating that at least half of the trials resulted in an INFILD

value of 2.00. This parameterization is an example of a potential source of structural

uncertainty since there appears to be no physical rationale for limiting INFILD to be less

than or equal to 2.00. Moreover, this is an example where INFILD, if it was known to

correlate with another parameter, could be left at the default value of 2.00 and taken out of

the calibration process. Similarly, all four catchments in HSPF have calibrated AGWRC

values between 0.900 and 0.999, which is a common result in the literature (e.g. Lowe
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2004; Chin et al. 2009; Van Liew et al. 2003). If AGWRC was found to be correlated with

another parameter, it could be held at the default value of 0.980 and taken out of the

calibration. If, in cases like those highlighted here, a particular parameter is known to be

highly correlated with several other parameters, the technique of holding the parameter at a

constant value and removing it from consideration in the calibration process will ultimately

reduce parameter uncertainty in the model results, reduce fluctuation in the calibrated

values of the other parameters and reduce the overall time needed for an automated

calibration algorithm (like the one employed here) to calibrate the model.

In SWAT the CN parameters calibrated to lower values in the agricultural areas than the

forest areas in all four catchments. Since higher CN values indicate more runoff, the models

are representing the agricultural area as being more pervious than the forest areas. While

these values may not be realistic in the LREW (Feyereisen et al. 2008), similar values have

been successfully used in other LREW models (Chin et al. 2009; Sakura-Lemessy 2009).

The parameter correlation was determined from the calibration process by tracking the

optimal values of each outer-loop cycle of each parameter. For the 10 hydrology parameters

in SWAT, for example, if the maximum amount of outer-loop cycles was set to 201 and the

calibration did not converge but was stopped upon reaching the maximum limit, then each

of the 10 parameters would have at least 20 outer-loop cycles from which an optimal

parameter value was selected for that iteration of the calibration. The parameter correlation

was then determined between the 20 values of each parameter and the 20 values of each

other parameter. It was observed that statistically significant parameter correlation occurred

frequently and at times between several parameters, although no consistent relationship

between correlated parameters existed and instead the parameter correlation depended on

the starting point of the calibration in each model in each catchment.

The NSE values of the calibrated HSPF and SWAT hydrology models are shown in Table

5.3, where the NSE values using a daily time step (NSED) and a monthly time step (NSEM)
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Table 5.3: Summary of HSPF and SWAT model results

Catchment Model Type Metric HSPF SWAT

I
Hydrology NSED 0.884 0.595

NSEM 0.903 0.897

Water Quality NSEln 0.243 0.275
p value 0.074 0.86

J Hydrology NSED 0.880 0.626
NSEM 0.881 0.762

Water Quality NSEln 0.263 -1.671
p value 0.57 3.1E-4

K Hydrology NSED 0.897 0.670
NSEM 0.894 0.886

Water Quality NSEln 0.387 0.334
p value 0.82 0.48

O Hydrology NSED 0.941 0.693
NSEM 0.955 0.932

Water Quality NSEln 0.342 -0.028
p value 0.21 0.10

are given. Note that the NSEM values were calculated based on the daily OF described in

Equation 4.2; the OF was not first readjusted to a monthly time step before calculating

NSEM. The hydrology calibrations achieved in HSPF and SWAT were satisfactory (0.50 <

NSE ≤ 0.65) to very good (NSE > 0.65) based on NSE criteria suggested in Moriasi et al.

(2007), and are at least comparable if not better than other modeling efforts in the LREW

using similar or identical catchments and/or time periods (Feyereisen et al. 2007a; Chin et

al. 2009; Sakura-Lemessy 2009). Having strong NSE agreement is important since the

water-quality predictions are directly affected by the hydrology components of the models.

The hydrology calibrations reveal that HSPF produces a better NSED value than SWAT, a

result previously reported in the literature (Van Liew et al. 2003; Chin et al. 2009) and

attributed to the fact that HSPF performs calculations on an hourly time step while SWAT

uses a daily time step. The frequency distributions of the modeled HSPF and SWAT

hydrology components are shown with the measured streamflow for the catchments in

Figure 5.1. The models show good agreement in matching the streamflow records at higher

flows, roughly the 90%-tile and above, and varying levels of agreement at lower flows. Note
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Figure 5.1: Frequency distributions of streamflow

that the magnitude of the flows correlate with the size of the catchment areas (Table 3.1),

which from largest to smallest are I, J, K, and O.

5.2.2 HSPF and SWAT Water-Quality Parameter Sensitivity

The calibrated maximum likelihood (ML) parameters of the HSPF and SWAT water-quality

models are shown in Tables 5.4-5.5. As in the hydrology models, there is a variety of

parameter values in the models across catchments. Sensitivity plots of the water-quality
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parameters in HSPF and SWAT are shown in Figures 5.2 and 5.3, respectively. In these

figures the relative likelihood distribution of each parameter over a range of 0.5-2.0 times

Table 5.4: HSPF water-quality calibration results

Parameter Units Default* Catchment
I J K O

ACQOP AG FC/ha-d 247 7.56E6 9.93 4.62 2.94
ACQOP FOR FC/ha-d 247 7.88E6 5.93 3.24 4.77

WSQOP cm/hr 4.17 0.0254 0.217 0.180 0.508
IOQC FC/m3 3530 3.23E6 5.68E6 1.36E7 1.40E7
PSRC FC/d 1.00E8 2.15E9 2.25E8 1.25E9 1.99E8

FSTDEC 1/d 1.00 0.100 0.100 5.75 0.100
* Note: slight variations of some default values occurred across catchments

Table 5.5: SWAT water-quality calibration results

Parameter Units Default* Catchment
I J K O

CFRT KG Ag kg/ha-d 30.0 0.210 2640 670 0.230
CFRT KG For kg/ha-d 30.0 3330 6330 1180 7830

BACTKDQ m3/Mg 175 1.07 1.38 1.45 0.0540
BACTMIX 10 m3/Mg 10.0 14.1 20.0 18.5 7.81
WDPRCH 1/d 0 2.30 1.85 2.88 3.99

WDPQ 1/d 0 0 0 0 0.128
BCNST CFU/100mL 1.00E8 2.53E9 8.30E7 2.64E8 2.21E8

* Note: slight variations of some default values occurred across catchments

the ML parameter value is shown, where the rest of the parameters are held constant at their

ML values. Since the SWAT parameter WDPQ calibrated to zero in catchments I, J, and K

it was not included on the relative scale shown in Figure 5.3, but rather is shown for the

actual parameter values in Figure 5.4.

The most notable observation that can be made from the HSPF and SWAT parameter

sensitivity plots (Figs. 5.2 and 5.3) is that the parameters directly affecting in-stream

processes are clearly the most sensitive (i.e. IOQC, PSRC, and FSTDEC in HSPF and

WDPRCH and BCNST in SWAT). This result is a reflection of how the in-stream

parameters have a constant effect, even during baseflow conditions, and are less dependent
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Figure 5.2: HSPF water quality parameter sensitivity

on rainfall/runoff phenomena. The HSPF parameters relating to the terrestrial accumulation

(ACQOP) and washoff (WSQOP) of bacteria are notably less sensitive than in-stream

parameters and even insensitive in some cases. This is likely due to the decrease in runoff

for larger areas as calculated by HSPF and shown in Figure 3.2. The SWAT parameters

relating to surface deposition of bacteria (CFRT KG) show differing levels of sensitivity,

from insensitive to very sensitive, which can be attributed to differences in land use and

runoff. Crowther et al. (2002) discuss the varying contribution of bacteria from land sources
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Figure 5.3: SWAT water quality parameter sensitivity

and suggest that terrestrial sources are more significant in smaller catchments while in

larger catchments the land sources are relatively less important than in-stream sources. This

phenomena is likely a result of larger catchments having both increased contributions of

bacteria from stream bed sediments and longer and more complex land-to-stream bacteria

pathways. Similarly, Byappanahalli et al. (2003) found that EC bacteria populations were

ubiquitous in riparian sediment, likely independent of fecal contamination, and decreased

with distance from the stream. The SWAT parameters BACTKDQ and BACTMIX are key
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Figure 5.4: Sensitivity of WDPQ in Catchments I, J, and K

parameters in SWAT’s unique suite of codes describing bacteria processes. Yet BACTMIX

is consistently insensitive while BACTKDQ shows a wide range of sensitivities. These two

parameters are an example of how increased parameterization in an attempt to better

describe bacteria processes may or may not improve the model. In the case of the

insensitive BACTMIX, it appears the extra parameters and process equations are more

likely to increase uncertainty instead of add meaning to the model. It is worth noting that

the most sensitive hydrological parameter in SWAT is the curve number (in this case

CN2 AG and CN2 FOR), a well-known fact which has been subsequently verified within

the LREW (Feyereisen et al. 2008, 2007; Cho et al. 2010; Jeong et al. 2010; White et al.

2009; Chin et al. 2009). The curve number of each land use, therefore, will have a direct but

varying emphasis on the runoff contribution of bacteria from terrestrial sources. This

phenomena is reflected in Figure 5.3, where the parameter describing land-application of

manure in forested lands (CFRT For) is generally more sensitive than the equivalent

parameter in agricultural lands (CFRT Ag). The parameter sensitivity reflected here is

likely due to the fact that the forest areas calibrated to higher CN values than the

agricultural areas (Table 5.2), indicating that more runoff is generated from forest areas.

Although SWAT represents the source of terrestrial bacteria in forest lands as manure
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application, in reality no manure would be applied to forested lands as an agricultural

practice, and it is more realistic to assume that the source of terrestrial bacteria applied to

the forested lands is some sort of wildlife defecation.

To assess terrestrial deposition, most bacteria models use data or make assumptions about

animal quantities (i.e. livestock, poultry, etc.), defecation rates, and manure bacteria

quantities (e.g. Baffaut and Sadeghi 2010; LaWare and Rifai 2006), although much care

must be taken in doing such analyses (Haydon and Deletic 2009). The approach used in this

study was to include the equivalent parameters (ACQOP, CFRT KG) as unknowns in the

calibration because most of the agricultural activity in the four catchments is crop-oriented

(not livestock-oriented) and because no other data was available. This approach avoids the

contribution of uncertainty that results from estimated loading rates and allows the model

parameters to freely calibrate to their optimal values without any initial artificial emphasis

on particular parameter values. In this manner, in the absence of a loading-bias, the true

parameter sensitivities are revealed as shown in Figures 5.2 and 5.3.

The sensitivity and magnitude of the IOQC parameter in HSPF highlights an important and

fundamental difference in how HSPF and SWAT address subsurface bacteria

concentrations. The calibrated IOQC values shown in Table 5.4 indicate that HSPF is

assigning a bacteria concentration of 106-107 CFU/m3 to the interflow, which contrasts with

SWAT, which has a core assumption that interflow concentration is zero. (Since the CC

model is based on hydrograph separation, which divides total flow into runoff and baseflow,

the CC model does not directly address interflow concentrations.) In reality, intact and

uniform soils act as a filter and bacteria transport through such soils is highly unlikely

(McMurry et al. 1998). However, as discussed in Chapter 2, bacteria can move in

subsurface flow (e.g. Oliver et al. 2009; Haydon and Deletic 2006), and sometimes to

significant degrees, when the movement is facilitated by subsurface irregularities like

macropore networks and areas of preferential flow (Hunter et al. 1992; McMurry et al.
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1998), or in regions with karst hydrology (Baffaut and Benson 2009). Bacteria fate and

transport in the subsurface is nearly impossible to predict with any degree of certainty, and

the inability to appropriately address these areas is a source of structural uncertainty in both

models. The issue is further complicated in an area like the LREW, with soils of high

infiltration rates and where lateral subsurface flow has been shown in some cases to be more

than 20% of the annual rainfall (Bosch et al. 2005).

5.2.3 HSPF and SWAT Water-Quality Calibration Results

The NSE values of the calibrated HSPF and SWAT water-quality models are shown in Table

5.3, where the NSEln is given for water quality. With the exception of SWAT in Catchment

J, the HSPF and SWAT water-quality model residuals were normal at the 95% confidence

limit, as evidenced by the p values shown in the table. For the water-quality models, both

models attained better NSEln values in Catchments K and I, although HSPF performed

better in Catchment K while SWAT performed better in Catchment I. In Catchments J and

O, HSPF performed notably better than SWAT. Although the guidelines suggested by

Moriasi et al. (2007) do not include bacteria model results, the NSEln values attained by the

models in this study would be considered unsatisfactory for other water-quality

constituents. Baffaut and Sadeghi 2010 provide NSEs of five different SWAT bacteria

models but none of those models used log-scaled NSEs, making direct comparison with this

study impossible. When log-scaling is not used, maximizing the NSE through calibration

tends to focus on hitting peak concentrations while not placing as much emphasis on

non-peak values.

While negative NSE values are not desirable, they are not uncommon in bacteria modeling.

Some of the NSE values reported in the Baffaut and Sadeghi 2010 study were negative, for

both calibration and validation, as are the NSEln values for SWAT in Catchments J and O.

Due to the definition of the NSE (Eq. 4.4), using the average of the data to predict the

observations produces an NSE value of zero (Legates and McCabe 1999), and therefore a
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model that produces a negative NSE is undesirable. The negative NSEln in Catchment O

can be attributed to SWAT’s performance in the immediate wake of a rainfall event. For

example, the three largest residuals from the model predictions (Fig. 5.5d) are of

(log-scaled) magnitude 1.7, 1.6, and 1.2 orders of magnitude, and all occur within 1-3

calendar days after a rainfall event. The SWAT FC predictions in the same 1-3 day interval

are all higher than those on the measurement days, and re-adjusting the model predictions

to the higher values results in an NSEln of 0.323. Or, eliminating these three points from the

record completely results in an NSEln of 0.141. These results show that in Catchment O,

where the NSEln was only slightly negative, a few small changes can improve the model

NSEln from an undesirable negative value to a more favorable positive value. It is likely that

these large model residuals are due to SWAT’s inability to model subdaily rainfall. Hantush

and Kalin (2008) address this issue in depth and recommend using a 3-day average for daily

flows to help compensate for the errors that may result from using a daily time step.

(Similarly, Russo et al. (2011) considered a three-day window for comparing HSPF FC

predictions with data, and found that the best match of the three days considered was within

an order of magnitude of the corresponding data point at least 84% of the time.) The

performance of SWAT in Catchment J is similar but more extreme to that in Catchment O-

there are nine model-predicted residuals of (log-scaled) magnitude greater than 1.0: five

underpredictions (two of which are nearly 3.0 orders of magnitude) and four

overpredictions. The five underpredictions all occur within two calendar days of a

significant rainfall, and in all cases a higher FC prediction can be found within that two-day

interval. The four overpredictions all occur in periods of low flow and no or little rainfall,

and result from the model’s inability to reproduce the low concentrations recorded in the

data. SWAT’s inability to account for these points results in the large, negative NSEln value

in Catchment J. Interestingly, HSPF and the CC model do not encounter the same difficulty

in Catchment J.
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The HSPF and SWAT model predictions are compared with corresponding measurements in

Figure 5.5, where the abscissa is the log-scaled FC data and the ordinate is the log-scaled

model predictions. The solid line in the figures has a slope of 1 and represents a perfect

model prediction whereas the dashed line indicates order-of-magnitude agreement. In all

cases the models tended to over-predict at lower measurement values and under-predict at

higher measurement values. Moreover, the model predictions deviate the most at extreme

highs and lows, which can result from random events or from wetter-than or drier-than

usual weather conditions. These highs and lows are clearly the most difficult to replicate

and reflect the limitations in modeling bacteria processes using an idealized numerical

model. Regardless of the difficulty found in modeling extreme events and the overall scatter

of model predictions in Figure 5.5, almost all the models showed a linear correlation

between the model predictions and the FC data in the log domain, as shown in Table 5.6.

Table 5.6: Correlation of FC data and model predictions, log-scaled

Catchment Data-HSPF Data-SWAT
I 0.525 0.581
J 0.537 -0.131*
K 0.645 0.608
O 0.606 0.423

*- Correlation not statistically significant

The instance where the correlation is not statistically significant is marked with an asterisk

(*)- in all other cases the correlation is statistically significant (p < 0.05), supporting a

linear correlation between the FC data and the model predictions.

The model predictions tended to be closest to the line of perfect prediction in the data range

of roughly 32-320 CFU/100 mL (1.5-2.5 in the log domain), although some predictions

near the perfect-correlation line can be seen at higher magnitudes (e.g. SWAT in J, K, and

O). Moreover, in Catchments I, J, and K, the HSPF model predictions tended to stay within

a smaller range of magnitude (Y-axis) while the SWAT predictions covered a wider range.

This is particularly obvious in Catchment I (Fig. 5.5a) where almost all the HSPF
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(b) Catchment J
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(c) Catchment K
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(d) Catchment O

Figure 5.5: HSPF and SWAT model results- log-scaled predictions

predictions are restrained within a magnitude of 100-320 FC/100 mL (2.0-2.5 in the log

domain), while the data and the SWAT predictions both fluctuate significantly above and

below that range. Despite the tendency to fluctuate, SWAT achieved the higher NSEln in

Catchment I.

The Chin et al. 2009 study examined very similar HSPF and SWAT models in Catchment

K, with the same time period and FC data set. However, the Chin et al. 2009 study did not

use a log-scaled objective function for the water quality portion, and the reported HSPF and
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SWAT NSE (water quality) values are 0.33 and 0.73, respectively. Comparing these values

with the log-scaled NSEln values in Catchment K for HSPF (0.387) and SWAT (0.334) as

shown in Table 5.3, it appears the log-scaling had a less-influential effect on model

predictions in HSPF than in SWAT. The different effect of log-scaling is likely due to the

fundamental difference in time resolution between the models as previously addressed,

where HSPF uses an hourly scale and SWAT uses a daily scale (e.g. Hantush and Kalin

2008; Russo et al. 2011). Therefore, it is likely that SWAT is more successful than HSPF at

hitting peak concentrations, as seen in the results here as well as in Chin et al. 2009, a

feature that is de-emphasized by log-transformation.

5.2.4 HSPF and SWAT Water-Quality Parameter Uncertainty

To quantify the role of parameter uncertainty on model error, a Latin Hypercube (LHC)

analysis (McKay et al. 1979) was conducted in both HSPF and SWAT in all four

catchments. LHCs use a stratified sampling technique to sample the model parameter space

and are considerably more efficient and produce lower variances than simple random

sampling methods such as Monte Carlo techniques (Flores et al. 2010; Christiaens and

Feyen 2002; Stein 1987). The first step is to determine the marginal probability density

function (PDF) of the water-quality parameters (Flores et al. 2010; Urban and Fricker

2010). This step is often problematic, however, since parameter PDFs are usually unknown.

Some studies address the issue by assuming parameter PDF distributions (e.g. Kros et al.

1999; Sexton et al. 2011; Stein 1987; Paul et al. 2004), others estimate the PDFs from data

(e.g. Flores et al. 2010; Christiaens and Feyen 2002), while others provide no information

about how the parameter PDFs used in the LHC were determined (e.g. Jia and Culver 2008;

Sándor and András 2004; Shen et al. 2008; Shirmohammadi et al. 2006; Griensven et al.

2006; Yu et al. 2001). The approach used here is to assume independent and normally

distributed parameter PDFs. This is a common assumption since the multivariate normal

distribution is known and easily applied to higher dimensions (Pebesma and Heuvelink
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1999; Kros et al. 1999; Haan 1989). The PDF of the k-variate normal distribution is

described by (Wilks 1962):

f (x1, . . . ,xk) =
�

|σi j|
(2π)1/2k exp

�
− 1/2Q(x1, . . . ,xk)

�
(5.1)

where (x1, . . . ,xk) is any point in Rk, and

Q(x1, . . . ,xk) =
k

∑
i, j=1

σi j(xi−µi)(x j−µ j) (5.2)

with � σi j � being the inverse of the covariance matrix � σi j � and µi the means of the xi.

Although the mean and standard deviation of the marginal PDF of each sensitive parameter

are required yet unknown, they can be estimated conditionally from either the starting point

(default) or the end point (optimal) of the calibration process. In this study the mean and

standard deviation were conditionally determined from the calibrated parameter values,

since the calibrated state yields smaller variances in the parameter distributions than the

default state. The statistics are found by sampling the parameter space of a single parameter

while holding all other parameters at the constant values associated with the given

calibration state. In other words, with all parameters held at their calibrated values, one

water-quality parameter was incrementally varied through its possible parameter range

(Tables 4.1 and 4.2) and the model was evaluated at each incremented parameter value. The

mean and standard deviation of the parameter were then estimated from the resulting values

of the likelihood function. Conceptually, this process is equivalent to cutting slices through

the multi-dimensional likelihood surface, where each parameter has a unique,

normally-distributed slice that represents the parameter distribution.
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With the assumption of independence and normality, the multivariate distribution is then

described by Equation 5.1 using the mean and standard deviation of the marginal

distributions of the parameters conditionally derived from the calibrated state of the models.

Since the parameter distributions used here were derived from actual parameter values no

negative values occurred, although implementing the parameter distributions in the LHC

from theoretical distributions must be done carefully to assure that no negative values are

derived from the normal PDF. Incidentally, HSPF and SWAT have built-in warnings to

notify users when improper (e.g. negative) parameter values are used. While it is

acknowledged that parameter correlation may have an effect on LHC analyses (e.g. Flores

et al. 2010; Melching and Bauwens 2001; Pebesma and Heuvelink 1999; Iman and Conover

1982), the inclusion of correlation may ultimately be negligible (Pebesma and Heuvelink

1999) or at worst include model runs with statistically implausible parameter combinations

(Flores et al. 2010). The assumption of parameter independence is justified here to facilitate

the use of the multivariate normal distribution and since parameter correlation is more

likely due to uncertain process equations than physically-realistic processes.

Once the marginal parameter PDFs are determined, each PDF is divided into Q regions of

equal probability and a parameter value is sampled from within each region. Q is

recommended to be greater than 4/3*P or at least between 2-5 times P (Christiaens and

Feyen 2002), where P is the number of parameters. In some cases the analysis is conducted

with several values of Q to examine LHC efficiency (Pebesma and Heuvelink 1999). The

model is then evaluated Q times, where the parameter set used in each model realization is a

random combination of parameter values taken from the divisions of the marginal PDFs.

This guarantees that each region of the PDF has equal probability of being sampled.

Because P = 6 for HSPF and P = 7 for SWAT, Q was selected as 50, so that the marginal

PDF of each parameter was divided into 50 regions, or 2% probability per region. The

parameter value corresponding to the centroid of each region was used, although some
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studies sample randomly or use the midpoint within each region (e.g. Pebesma and

Heuvelink 1999; Melching and Bauwens 2001). For each of the 50 model evaluations, the

parameter set used was a random combination of parameter values selected from the

sub-divided PDFs. Insensitive parameters (Figs. 5.2 and 5.3) were held at ML values.

The results of the LHC analysis are summarized in Table 5.7, where for each catchment the

distribution of FC data points within and outside the 95% confidence interval of the 50

model runs is quantified. A visual example of the process is shown in Figure 5.6, where the

Table 5.7: Number of FC data points relative to LHC 95% confidence interval (CI)

HSPF
Catchment Below CI (%) Within CI (%) Above CI (%) Total

I 15 (32) 17 (36) 15 (32) 47
J 23 (42) 5 (9) 27 (49) 55
K 19 (36) 9 (17) 25 (47) 53
O 21 (44) 6 (12) 21 (44) 48

SWAT
Catchment Below CI (%) Within CI (%) Above CI (%) Total

I 19 (40) 12 (26) 16 (34) 47
J 25 (45) 17 (31) 13 (24) 55
K 23 (43) 10 (19) 20 (38) 53
O 18 (38) 16 (33) 14 (29) 48

FC data and LHC analysis are plotted for the year 1997 in Catchment K. The results of the

LHC analysis (Table 5.7) show that 9-36% and 19-33% of the data falls within the 95%

confidence interval for HSPF and SWAT, respectively. All of the models produced at least

half of the data points outside the confidence interval and seven of the eight models

produced at least two-thirds of the data points outside of the modeled confidence interval,

showing that even when parameter uncertainty is maximally reduced through calibration,

the structural component of the model uncertainty is still dominant and prohibitive

(Abbaspour et al. 2007). These results also show that the natural processes involved include

more variability than can be accounted for simply by parameter variation, or, as stated by

Yang et al. (2007), “prediction uncertainty in hydrological modeling can hardly be
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(b) SWAT

Figure 5.6: Latin Hypercube Analysis- Catchment K, 1997

described by parameter uncertainty only”. The only way to achieve better model

predictions, then, is to revisit and improve the process equations describing bacteria fate

and transport in each model. A notable simplification of the complex process equations

used by HSPF and SWAT may be needed to improve model performance.

5.2.5 CC Model

The CC model results are shown in Table 5.8, where the parameters cb and cr were

determined from the linear best-fit relationship between lnc and qr as shown in Figure 5.7.

It is apparent from Table 5.8 that the hydrograph separation technique that attained the

highest NSEln, while maintaining the assumption of normal errors, was the LM method in

Catchments I, K, and O, and the FI method in J. These versions of the models will be used

for the remainder of the analysis. It is interesting to note that while the FI model did not

have normal residuals at the 95% confidence limit in all Catchments, it attained a

significantly higher NSEln than either HSPF or SWAT in Catchments I, J, and O, and a

NSEln in Catchment K between those attained by HSPF and SWAT. The CC model did not

produce any negative NSEln values under any circumstances. Moreover, in most cases cr
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Table 5.8: Summary of CC model results

Catchment Model NSEln p Value

Characteristic
Concentration
(CFU/100 mL)
cb cr

I
FI 0.439 2E-3 99 2668
SI 0.329 0.03 88 1777

LM 0.217 0.36 114 662

J
FI 0.402 0.20 73 845
SI 0.325 0.01 65 910

LM 0.281 0.23 81 477

K
FI 0.370 4E-3 92 1243
SI 0.277 0.11 95 1110

LM 0.302 0.19 86 894

O
FI 0.297 0.92 77 1087
SI 0.370 0.10 63 2257

LM 0.395 0.68 66 913

was at least an order of magnitude greater than cb, and the LM method consistently

produced the lowest cr value in all catchments while the FI method produced the highest cr

parameter in I and K and the SI method produced the highest cr parameter in J and O.

The CC model predictions are plotted with measurements in Figure 5.8, where the abscissa

is the log-scaled FC data and the ordinate is the log-scaled model predictions. The solid line

in the figures has a slope of 1 and represents a perfect model prediction whereas the dashed

line indicates order-of-magnitude agreement. As in the HSPF and SWAT models, the CC

model tended to over-predict at low data values and under-predict at high data values, and

the model predictions tended to be closest to the line of perfect prediction in the data range

of roughly 32-320 CFU/100 mL (1.5-2.5 in the log domain). Similar to the HSPF model,

the predictions tended to stay within a tightly defined range, albeit a slightly larger range of

roughly 100-1,000 CFU/100 mL (2.0-3.0 in the log domain). Determining the best-fit

parameters (and NSEln values) of the CC model was done only on the days corresponding

to the FC data and did not incorporate the random term shown in Equation 3.30.
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(a) Catchment I- Local Minimum
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(b) Catchment J- Fixed Interval
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(c) Catchment K- Local Minimum
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(d) Catchment O- Local Minimum

Figure 5.7: CC model results- best-fit line

A further examination of the CC model in contrast to HSPF and SWAT reveals several

distinct advantages that merit its inclusion in bacteria modeling studies. First and foremost,

the data requirements (streamflow and bacteria concentrations) are much less than for HSPF

and SWAT, which makes model setup and use significantly easier and can be advantageous

in areas with little available data. Secondly, while HSPF and SWAT have several hydrology

and water quality parameters that must be calibrated, and complex process equations for

modeling environmental phenomena, the 2-parameter CC model is structurally much



www.manaraa.com

79

0 1 2 3 4 5−1

0

1

2

3

4

5

6

FC Data, log10(CFU/100mL)

Pr
ed

ic
tio

ns
, l

og
10

(C
FU

/1
00

m
L)

 

 
CC Model
Perfect Prediction
Order of Magnitude

Student Version of MATLAB

(a) Catchment I

0.5 1 1.5 2 2.5 3 3.5 4−1

0

1

2

3

4

5

FC Data, log10(CFU/100mL)

Pr
ed

ic
tio

ns
, l

og
10

(C
FU

/1
00

m
L)

 

 
CC Model
Perfect Prediction
Order of Magnitude

Student Version of MATLAB

(b) Catchment J
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(c) Catchment K
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(d) Catchment O

Figure 5.8: CC model results- log-scaled predictions

simpler and easier to calibrate and has been shown to achieve comparable results (Tables

5.3 and 5.8). Another advantage is that the CC model uses the actual streamflow

measurements to model the bacteria concentrations, while HSPF and SWAT both use a

modeled hydrology component to model the bacteria concentrations instead of the

streamflow measurements. While the CC model does not provide any land-use to in-stream

concentration relationships, the cb and cr parameters directly quantify the origins of the

in-stream bacteria loads, can be adjusted based on land-use changes, and can be used to
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quantify the load reductions necessary to achieve compliance with given water-quality

standards. Perhaps most importantly, the CC model predicts bacteria concentrations while

directly accounting for the runoff ratio of the streamflow on the day of data collection. This

important relationship can be seen in Figure 5.7, where qr = 0 corresponds to baseflow

conditions, qr = 1 corresponds to runoff equaling streamflow, and the best-fit line at qb = 0

and qr = 1 equals the calibrated parameters cb and cr, respectively. The distributions of FC

data shown in Figure 5.7 show that while some points were indeed collected during

baseflow conditions (qr = 0), the majority of the data was collected under the effect of

baseflow plus runoff conditions. Moreover, the peak values in each catchment occurred at

qr > 0.7, although not at qr = 1. The FC versus qr relationships shown in Figure 5.7 capture

the randomness and the difficulty encountered in bacteria modeling. While expected

relationships generally hold (such as higher FC concentrations with increasing qr), there are

contradictory exceptions that also occur. Extreme exceptions can be seen in Catchments I, J,

and K, (Fig. 5.7a-5.7c), where two data points differ by almost two orders of magnitude

around qr = 0.9, 0.75, and 0.85, respectively. The CC model, however, accounts for the

fluctuations at baseflow conditions as seen in Figure 5.7, such that when qr = 0 in Equation

3.30, the in-stream concentration varies depending on the baseflow and random

components. The inclusion of the random term is an adequate way to represent the

randomness of the bacteria resuspension and sediment-associated processes that occur

in-stream. While HSPF and SWAT have much more complicated algorithms for detailing

in-stream processes, a large amount of uncertainty is incorporated due to not being able to

perfectly describe this phenomena.

Finally, it is acknowledged that a linear relationship exists between model complexity and

model uncertainty, where more complicated models require more parameters but the

increase in parameters decreases their identifiability and makes calibration and uncertainty

analysis more difficult (Shirmohammadi et al. 2006; Yang et al. 2007). Conversely, simpler

model structures with less parameters will result in a more robust parameter calibration but
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may contribute uncertainty due to reduced process equations that replicate simpler physical

processes (Franks and Beven 1997). This study revealed that the 2-parameter CC model

attained comparable or better NSEln values than the much more complicated HSPF and

SWAT models (Tables 5.4, 5.5, 5.8), indicating that a simpler model does not necessarily

underperform more complex models.

5.3 CONCLUSIONS

This chapter presented the HSPF and SWAT models and preliminary results that are the

foundation of all the research efforts included in this dissertation. The hydrology

components of the models were strong but it was found that many of the parameters in both

models were significantly correlated with several other parameters. The parameter

correlation is a result of structural uncertainty and induces an element of equifinality into

the calibrated parameter sets. The water-quality components of the models were not as

strong due to minimal data and the difficulty in modeling the highly random and uncertain

nature of bacteria dynamics. The water-quality components are also inherently complicated

by the parameter correlation in the calibrated hydrology components, since the

water-quality is dependent on the hydrology. The most sensitive water-quality parameters

were those dealing with in-stream bacteria processes, while parameters relating to terrestrial

processes varied from sensitive to completely insensitive. The process equations involving

the insensitive parameters contribute uncertainty to the model and should be refined or

removed. The LHC analysis confirmed that significant parameter uncertainty occurs in

HSPF and SWAT, but that the structural uncertainty is still the dominant source of model

uncertainty. The only way to reduce structural uncertainty then is to change the way the

models are built. All three models over-predicted low bacteria levels and under-predicted

peak bacteria levels. The CC model is much simpler than both HSPF and SWAT, yet

attained comparable results, making it an attractive option for those not experienced with

HSPF and SWAT, or in areas where minimal data is available. The CC model is
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fundamentally different than HSPF and SWAT and therefore can provide another

perspective from which to analyze the problem of bacteria modeling and possibly

contribute understanding into bacteria fate and transport.
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Chapter 6

In-Stream Bacteria Modeling as a
Function of the Hydrologic State of a
Watershed

6.1 BACKGROUND

While there is consensus in the literature that increased in-stream bacteria concentrations

occur after rainfall, an exact synthesis of all related phenomena to best predict in-stream

concentrations has been elusive. As described in Chapter 2, many of the processes involved

in bacteria fate and transport are known, such as overland flow, infiltration, subsurface flow,

absorption to streambed sediment, point-source contributions, and soil matrix habitation

and persistence (e.g. Wilkinson et al. 1995; Harmel et al. 2010; Jamieson et al. 2005; Auer

and Niehaus 1993). However, the exact roles played by these complex phenomena are not

constant and can vary significantly from site to site. For example, the transport of bacteria

in overland flow can be significant and has been shown to depend on the moisture content

and/or wet or dry state of the soil (e.g. Tyrrel and Quinton 2003; Muirhead et al. 2006a,b),

and yet transport of bacteria in overland flow may be insignificant in large/upper

catchments (Crowther et al. 2002) or at increasing distances from riparian and streambank

locations (Byappanahalli et al. 2003). Other studies, however, have revealed that the

83
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increased bacteria quantities in the wake of a rainfall event are likely due to in-stream

processes instead of terrestrial processes. For example, bacteria concentrations have been

observed to peak on the rising limb of a hydrograph under both natural (Davies-Colley et al.

2008) and man-made (McDonald et al. 1982) stormflow conditions. These results contradict

what might be expected, that bacteria concentrations would climax after the hydrograph

peak as terrestrial fecal matter is transported to the stream, and instead show that the

increase in channel flow stirs up and releases bacteria stored in channel sediment.

Solo-Gabriele et al. (2000) showed that increased bacteria concentrations in a coastal

subtropical environment were due to the heightened river stage interacting with channel

bank sediment and soil instead of runoff-induced terrestrial transport phenomena. Similarly,

in studying a midwestern stream that discharges into Lake Michigan, Byappanahalli et al.

(2003) observed that EC was common in the stream basin, especially in “submerged,

margin, and wetted bank sediments”. Their results led to the conclusion that EC was

ubiquitous in riparian areas and likely independent of fecal contamination. Davies-Colley

et al. (2008) suggest that the main role of fecal matter washed into streams from terrestrial

sources is to replenish the in-channel stores of bacteria that are flushed on the rising limb of

the hydrograph.

Bacterial water-quality analyses are often conducted on a seasonal basis based on wet and

dry times of the year. The state of Georgia, for example, implements a seasonal

water-quality standard for FC where the allowable monthly geometric mean from

May-October is five times more stringent than that for November-April (GA DNREP

2005). A seasonal breakdown is convenient because it generally distinguishes wet and dry

rainfall periods, higher and lower temperature (which can be significant in bacteria die-off

processes), and times when recreational use of water bodies such as bathing, boating, and

fishing are more likely to occur (e.g. Liu et al. 2006). A seasonal analysis is also convenient

in agricultural areas where the transport of dairy effluent and animal manure in overland

flow has been shown to be highest in the hydrologically wet time of the year
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(Shirmohammadi et al. 1997), and where there is a distinct difference in land use during the

growing season than during other times of the year (e.g. Feyereisen et al. 2008). Modeling

studies have acknowledged that: better results can be achieved when using data from wet

conditions instead of dry conditions (Jeong et al. 2010); in some cases, the specific

adjustment of calibrated parameter values is required in cold and wet spring periods and

very wet summer periods (Al-Abed and Whiteley 2002); parameters may be adjusted based

on growing season (White et al. 2009); and that using “dryer than average” streamflow

records may be useful in specifically examining low flow conditions, although they are

likely to substantially underestimate hydrologic processes over the long-term (Van Liew

et al. 2003).

Although a seasonal breakdown based on the calendar year is simple and convenient, it may

not accurately describe the hydrologic state of the watershed, since occasional dry days will

inevitably occur in the “wet” season, and vice versa. An additional complication occurs

from the FC data collection, where in response to time and financial constraints, long-term

studies will usually collect data at weekly, monthly, or multi-month intervals, while

short-term (seasonal) studies often utilize an intensified sampling routine over a smaller

time interval that coincides with recreational use. A more accurate method of defining

hydrologic state is to look at the actual river flow on any given day, regardless of the

calendar month in which it occurs. Such an approach is particularly useful in long-term

water-quality studies, where the overall state of the river over the course of the study can

not be assumed to conform to what is expected of a particular season, and therefore the

specification of the actual state of the river on the day of the weekly, monthly, or other time

interval when the data is collected is a major improvement.

The research presented in this chapter implements such an approach, where “wet” and

“dry” conditions were defined by a probabilistic assessment of the daily river flow as

determined by the flow duration curve. The FC data sets were divided into corresponding
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wet and dry groups and the bacteria modeling was performed for the wet and dry

conditions. The analysis provides unique insight into model performance, parameter

sensitivity, and the FC data on a wet or dry basis. This insight can be used for guiding the

design of future bacteria studies or for refining the current model process equations.

6.2 THEORY

A Flow Duration Curve (FDC) is a probability distribution that expresses the flow values in

terms of an exceedance probability relative to the entire flow record. The FDC was

determined using the Weibull formula (Weibull 1939; Chin 2006). First, the daily

streamflow record of length N for each catchment was ranked such that a rank of 1

corresponded to the observation of lowest magnitude, and a rank of N corresponded to the

observation of largest magnitude. The exceedance probability of the m-ranked observation,

xm, was then estimated as a cumulative distribution function by:

Px(X < xm) = 1− m
N +1

, m = 1, ...,N (6.1)

FDCs are typically broken into five regions based on exceedance probabilities, where

0-10% is considered High Flows, 10-40% is considered Moist Conditions, 40-60% is

considered Mid-Range Flows, 60-90% is considered Dry Conditions, and 90-100% is

considered Low Flows (USEPA 2007). Flow duration curves (FDC) were developed from

the daily streamflow records of each catchment. The FDCs for all four catchments are

shown in Figure 6.1. The FC data sets were included in the figure and the data points are

plotted based upon the exceedance probability of the flow on the day when the FC data

measurement was made.

In Table 6.1 a breakdown is shown of the FC data points in each catchment based on

exceedance probabilities of 20, 25, 30, and 35%. In each case, the data points taken on days
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(d) Catchment O

Figure 6.1: Flow Duration Curves

of higher flows (lower exceedance probability) were considered to be “wet” and the data

points taken on days of lower flow (higher excceedance probability) were considered “dry”.

Based on the distribution of data as shown in Table 6.1, the 30% exceedance probability

was selected as the demarcator between wet and dry because the data is more evenly

divided between wet and dry at 30% than at the other exceedance probabilities. Therefore,

for the remainder of the analysis, wet will refer to conditions with flow exceedance values

less than or equal to 30% and dry will refer to conditions with flow exceedances greater
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Table 6.1: Distribution of FC data points into wet and dry states for several exceedance
probabilities

Catchment I J K O
Total FC Points 47 55 53 48
Flow Condition wet dry wet dry wet dry wet dry
20% Exc. Prob. 20 27 19 36 21 32 15 33
25% Exc. Prob. 22 25 24 31 26 27 18 30
30% Exc. Prob. 27 20 28 27 29 24 24 24
35% Exc. Prob. 29 18 32 23 31 22 28 20

than 30%, even though some flows greater than 30% are still considered moist conditions or

mid-range according to the traditional definition.

Upon establishing the definition of the hydrologic states, separate calibrations were

performed for the wet and dry water-quality models in HSPF and SWAT. The hydrology

components of the models were kept the same as the calibrated versions in Chapter 5, but

the water-quality components were calibrated separately to the wet and dry FC data sets.

The calibration procedure and default starting state of the models were the same as

described earlier.

6.3 RESULTS AND DISCUSSION

6.3.1 HSPF and SWAT Wet/Dry Parameter Sensitivity

The HSPF and SWAT water-quality parameters considered were the same as discussed

earlier, and the calibrated maximum likelihood (ML) parameters of the wet and dry models

are shown in Tables 6.2-6.5. Sensitivity plots of the water-quality parameters in HSPF and

SWAT in the wet and dry states are shown in Figures 6.2-6.5. In these figures the relative

likelihood distribution of each parameter over a range of 0.5-2.0 times the ML parameter

value is shown, where the other parameters are held constant at their ML values. The most

notable observation in HSPF (Figs. 6.2 and 6.3) is that, similar to what was found in

Chapter 5, the in-stream parameters PSRC and IOQC are consistently the most sensitive
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Figure 6.2: HSPF water-quality parameter sensitivity, Catchments I and J
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Figure 6.3: HSPF water-quality parameter sensitivity, Catchments K and O
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Figure 6.4: SWAT water-quality parameter sensitivity, Catchments I and J
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Figure 6.5: SWAT water-quality parameter sensitivity, Catchments K and O
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Table 6.2: HSPF water-quality calibration results- wet state

Parameter Units Default* Catchment
I J K O

ACQOP AG FC/ha-d 247 9.41 7.96 1.63E4 4.50
ACQOP FOR FC/ha-d 247 12.0 10.3 1.48E4 13.5

WSQOP cm/hr 4.17 0.510 0.210 0.090 0.510
IOQC FC/m3 3530 6.35E6 5.38E6 7.03E6 1.35E7
PSRC FC/d 1.00E8 7.37E8 1.50E8 4.93E8 3.22E8

FSTDEC 1/d 1.00 0.340 0.100 0.100 0.100
* Note: slight variations of some default values occurred across catchments

Table 6.3: HSPF water-quality calibration results- dry state

Parameter Units Default* Catchment
I J K O

ACQOP AG FC/ha-d 247 24.7 2.76E5 5.34 24.7
ACQOP FOR FC/ha-d 247 24.7 2.47E5 4.27 24.7

WSQOP cm/hr 4.17 0.508 0.0437 0.508 0.508
IOQC FC/m3 3530 2.80E6 9.11E6 1.44E7 1.57E7
PSRC FC/d 1.00E8 5.00E9 2.30E8 1.12E9 1.65E8

FSTDEC 1/d 1.00 2.66 0.100 4.00 4.00
* Note: slight variations of some default values occurred across catchments

parameters while the parameters relating to terrestrial processes (ACQOP and WSQOP) are

consistently insensitive. These observations are generally consistent for HSPF in all

catchments and in both wet and dry states. There are several differences that can be seen

between the wet and dry states, however. First, the interflow concentration (IOQC) is

notably less sensitive in the dry state than in the wet state in all catchments. This

observation reflects the fact that in the dry state the contribution from baseflow to the total

river flow is likely dominant over the contribution from interflow. In fact, in very dry

conditions when total stream flow consists solely of baseflow, the interflow and therefore

interflow contribution to in-stream bacteria will be zero, which further explains the lessened

sensitivity of IOQC in the dry state. Secondly, the order of sensitivity between IOQC and

PSRC reverses between wet and dry states, where IOQC is more sensitive than PSRC in the

wet state in all four catchments and PSRC is more sensitive than IOQC in the dry state in all

four catchments. This too reflects the effect that sources of flow have on the in-stream
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Table 6.4: SWAT water-quality calibration results- wet state

Parameter Units Default* Catchment
I J K O

CFRT KG Ag kg/ha-d 30.0 0.010 2920 26.5 0.210
CFRT KG For kg/ha-d 30.0 1004 4850 979 6740

BACTKDQ m3/Mg 175 1.22 1.45 1.50 1.75
BACTMIX 10 m3/Mg 10.0 20.0 16.5 15.6 8.31
WDPRCH 1/d 0 0 2.34 0.790 4.25

WDPQ 1/d 0 0 0 0 0
BCNST CFU/100mL 1.00E8 9.72E8 2.22E8 3.26E8 4.82E8

* Note: slight variations of some default values occurred across catchments

Table 6.5: SWAT water-quality calibration results- dry state

Parameter Units Default* Catchment
I J K O

CFRT KG Ag kg/ha-d 30.0 9420 95.2 656 4.75
CFRT KG For kg/ha-d 30.0 0 1.12 0.290 8000

BACTKDQ m3/Mg 175 1.07 1.38 1.45 0.846
BACTMIX 10 m3/Mg 10.0 14.1 20.0 18.5 20.0
WDPRCH 1/d 0 2.05 0.140 1.91 3.04

WDPQ 1/d 0 0 0 0 0
BCNST CFU/100mL 1.00E8 1.12E9 9.03E6 1.03E8 7.76E7

* Note: slight variations of some default values occurred across catchments

bacteria concentration, where the background source (PSRC) is more sensitive in the dry

state when it is the only constant and direct bacteria source, while the interflow

concentration is more sensitive in the wet state when interflow is likely to contribute more

significantly to total streamflow. The calibrated water-quality parameters shown in Tables

6.2 and 6.3 show that PSRC is approximately the same order of magnitude in wet and dry

states, but in Catchments I, J, and K, the value of PSRC in the dry state is greater than in the

wet state. This further reflects the additional bacteria load contribution made by PSRC in

the dry state. Similarly, the order of magnitude of IOQC is approximately the same between

wet and dry states of the catchments, and the value of IOQC in Catchments J, K, and O is

greater in the dry state than in the wet state. Finally, while the in-stream bacteria decay

parameter (FSTDEC) shows little to no sensitivity in the wet state of any catchment, it is
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sensitive in the dry states of Catchments I, J, and K. Bacteria die-off, as represented by

FSTDEC, is likely a more significant process in the dry state than in the wet state when the

stream has more flow and components like the interflow are contributing a significant

quantity of bacteria to the stream.

In SWAT (Figs. 6.4 and 6.5), the most consistently sensitive parameter in wet and dry states

in all four catchments is the in-stream background concentration (BCNST), which is more

sensitive in the dry state than the wet state of each catchment with exception to Catchment

K, where the sensitivity is approximately equal between states. The other sensitive

in-stream parameter in SWAT from Chapter 5 is the bacteria die-off rate (WDPRCH) which

does not show a consistent pattern of sensitivity in the wet and dry states, although it is

generally more sensitive in the dry state than the wet state. Since WDPQ in Catchment I

calibrated to zero it was not included on the relative scale shown in Figure 6.4a, but rather is

shown for the actual parameter values in Figure 6.6. Also, while the land-application

0 0.05 0.1 0.15 0.2 0.25 0.30

0.2

0.4

0.6

0.8

1

WDPQ (1/d)

R
el

at
iv

e 
Li

ke
lih

oo
d

 

 
Catchment I

Student Version of MATLAB

Figure 6.6: SWAT parameter WDPRCH in wet model of Catchment I

parameters (CFRT) reveal a variety of sensitivities, as in Chapter 5, they are relatively

insensitive in the dry states of the catchments, which is a reflection of the reduced bacteria

contributions made by terrestrial sources in dry conditions. Tables 6.4 and 6.5 reveal that

there is little consistency in the CFRT-Ag and CFRT-For parameters between catchments or
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in wet or dry states. This lack of a predictable pattern is likely a result of the calibration

procedure attempting to find optimal values of these parameters of varying sensitivity in

order to maximize the NSEln of the model output. This result is noteworthy in SWAT since

the model does not permit subsurface bacteria and therefore must account for all in-stream

concentrations via direct sources like BCNST or via terrestrial rainfall-runoff processes

affected by parameters like CFRT. Since CFRT-For in the dry model of Catchment I

calibrated to zero it was not included on the relative scale shown in Figure 6.4b, but was

relatively insensitive at non-zero values similar to CFRT-For in Catchment J (Fig. 6.4d).

The SWAT parameters that affect bacteria concentrations in soil solution in runoff

(BACTKDQ) and the leaching of bacteria to subsurface layers (BACTMIX) are both

insensitive in the dry state, and BACTMIX is also insensitive in the wet state. The die-off

coefficient for soil-solution bacteria (WDPQ) calibrated to zero for the wet and dry models

in all catchments and was otherwise insensitive at nonzero values, and was therefore left out

of the sensitivity plots shown in Figures 6.4 and 6.5.

The effects of the wet/dry analysis were further explored for the sensitive parameters IOQC

and PSRC in HSPF and BCNST in SWAT. The sensitivity curves of the selected parameters

from Figures 5.2, 5.3, and 6.2-6.5 were combined with the actual calibrated parameter

values in Tables 5.4, 5.5, and 6.2-6.5 to compare the relative values and sensitivities of

IOQC, PSRC, and BCNST, as shown in Figures 6.7, 6.8, and 6.9, respectively. The sensitive

parameters FSTDEC (HSPF) and WDPRCH (SWAT) were not considered since they both

play identical roles as first-order decay rates in the models and therefore do not highlight

differences between HSPF and SWAT, although the parameters do show a variety of

calibrated values between catchments and hydrologic states in Tables 5.4, 5.5, and 6.2-6.5.

In Figure 6.7 it can be seen that IOQC in the wet state is generally more sensitive than the

dry state in each catchment. The value of the calibrated IOQC parameter is least in the wet

state in all cases except for Catchment I. Similarly, the value of IOQC in the “all” state is



www.manaraa.com

97

1E6 2E6 3E6 5E6 7E6 1E70

0.2

0.4

0.6

0.8

1

IOQC Parameter Value (FC/m3)

R
el

at
iv

e 
Li

ke
lih

oo
d

 

 
WET
DRY
ALL

Student Version of MATLAB

(a) Catchment I

3E6 5E6 7E6 1E7 2E70

0.2

0.4

0.6

0.8

1

IOQC Parameter Value (FC/m3)

R
el

at
iv

e 
Li

ke
lih

oo
d

 

 
WET
DRY
ALL

Student Version of MATLAB

(b) Catchment J

4E6 6E6 8E6 1E7 2E7 3E70

0.2

0.4

0.6

0.8

1

IOQC Parameter Value (FC/m3)

R
el

at
iv

e 
Li

ke
lih

oo
d

 

 
WET
DRY
ALL

Student Version of MATLAB

(c) Catchment K

8E6 1E7 2E7 3E7 4E70

0.2

0.4

0.6

0.8

1

IOQC Parameter Value (FC/m3)

R
el

at
iv

e 
Li

ke
lih

oo
d

 

 
WET
DRY
ALL

Student Version of MATLAB

(d) Catchment O

Figure 6.7: IOQC (HSPF) sensitivity in three hydrologic states
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Figure 6.8: PSRC (HSPF) sensitivity in three hydrologic states
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Figure 6.9: BCNST (SWAT) sensitivity in three hydrologic states
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between that of the wet and dry states in all cases except for Catchment I. The value of

IOQC is of the same magnitude on a per-catchment basis. In Figure 6.8 it can be seen that

the value of PSRC is greater in the dry state than the wet state in all cases but Catchment O.

The shape of the curves show that PSRC is more sensitive in the dry state than the wet state,

and that all the states are within an order of magnitude. Additionally, as was shown in

Figures 6.2-6.3, the magnitude of the PSRC sensitivity was comparable to IOQC in most

cases. This sensitivity analysis of PSRC is important since it is not a default parameter in

HSPF but was added as a custom input. It is fair to assume, then, that the HSPF models

would perform significantly different and not as well without the inclusion of the sensitive

background parameter PSRC. In Figure 6.9 it can be seen that the parameter BCNST has

greater magnitude in the wet state than the dry state in all but Catchment I, but the dry state

is more sensitive. Similarly, the magnitude of the parameter in the “all” state is between the

wet and dry states in all but Catchment I. BCNST tends to be more sensitive in the dry state

than the other two states, and the parameter is within an order of magnitude in the three

states on a per catchment basis. As with PSRC in HSPF, BCNST is not a default parameter

in SWAT and was added as a custom parameter to the models in this study. It is fair to

assume that not including BCNST would result in models that perform significantly

different and not as well as the models considered here.

6.3.2 HSPF and SWAT Calibration Results

The NSEln and p values of the calibrated wet and dry water-quality models are shown in

Table 6.6. Also shown in Table 6.6, as a reference and labelled “all”, are the calibrated

water-quality models using the whole data set as reported in Chapter 5. The results show

that in all cases except for Catchment O in SWAT that the wet models achieved the highest

NSEln followed by the models using the whole data set (“all”) and finally the dry models.

The pattern is reversed in SWAT in Catchment O, where the dry achieved the highest NSEln

followed by the wet and the “all”. Even though the wet versions of both models make
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Table 6.6: Summary of water-quality model calibrations

Catchment Hydrologic Model NSEln p Value
State HSPF SWAT HSPF SWAT

I
all 0.243 0.275 0.07 0.86
wet 0.313 0.588 0.78 0.06
dry 0.120 -0.432 0.85 0.59

J
all 0.263 -1.67 0.57 3.1E-4
wet 0.370 -1.31 1.9E-3 0.01
dry -0.436 -2.84 0.12 1.7E-4

K
all 0.383 0.334 0.82 0.48
wet 0.438 0.592 0.79 0.26
dry 0.295 0.260 0.79 0.79

O
all 0.342 -0.028 0.21 0.10
wet 0.484 0.066 0.05 0.06
dry -0.168 0.152 0.43 0.17

improvements over the “all” models in Catchments I, J, and K, it appears the magnitude of

improvement in each case is greater in SWAT than in HSPF. This is particularly obvious in

Catchments I and K, where HSPF and SWAT have nearly equal NSEln values in the “all”

state, but the wet state of SWAT in these catchments have a notably higher NSEln than the

corresponding HSPF models. Conversely, the dry states of SWAT in Catchments I and K

have NSEln values lower than the dry states in HSPF. This result is likely due to the daily

vs. hourly difference in time resolution between the models, which tends to make SWAT

fluctuate to greater extremes, as previously discussed.

The HSPF and SWAT wet and dry calibrated model predictions are compared with

corresponding measurements in Figures 6.10-6.11, where the abscissa is the log-scaled

wet/dry FC data and the ordinate is the log-scaled model predictions. The solid line in the

figures has a slope of 1 and represents a perfect model prediction whereas the dashed line

indicates order-of-magnitude agreement. In all cases the models tended to over-predict at

lower measurement values and under-predict at higher measurement values, as was found in

Chapter 5. In some, but not all cases, the model predictions deviated the most at extreme

highs and lows. All of the dry models, with exception to one HSPF point in Catchment K,
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(a) Catchment I-Wet
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(b) Catchment I-Dry
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(c) Catchment J-Wet
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(d) Catchment J-Dry

Figure 6.10: HSPF and SWAT model results- log-scaled seasonal predictions

had model predictions within one order of magnitude of the data. Conversely, all the wet

models had at least two points with residuals greater than one order of magnitude. It is

interesting to note that the division of FC data points into wet and dry states, as described

earlier, results in a wider range of data values considered in the wet state of each catchment

than in the dry state, the only exception being the lowest values considered in Catchment O.

In other words, the largest data point considered in the wet state is of greater magnitude

than the largest data point in the dry state, and the smallest data point considered in the wet
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(a) Catchment K-Wet
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(b) Catchment K-Dry
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(c) Catchment O-Wet
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(d) Catchment O-Dry

Figure 6.11: HSPF and SWAT model results- log-scaled seasonal predictions

state is of lesser magnitude than the smallest data point in the dry state (with exception to

the low points in Catchment O). This implies that even though the wet state includes more

streamflow, the extremes of the data sets, both high and low, occur under wet conditions.

Conversely, the data sets collected in dry conditions incorporated a smaller overall range of

bacteria concentrations.
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6.4 CONCLUSION

The wet and dry models presented in this chapter reflect the complex relationship of

in-stream bacteria concentrations and the hydrologic state of a watershed. Several important

conclusions can be drawn in analyzing the differences between how HSPF and SWAT

perform in the wet and dry states. For example, the fundamental difference in how the

models handle subsurface bacteria concentrations has a more pronounced effect in a

wet/dry analysis, where HSPF becomes more sensitive to interflow concentrations (IOQC)

and still has insensitive land-application parameters (ACQOP) in the wet state, while SWAT

does not model interflow concentrations but instead accounts for the difference with

land-application parameters (CFRT) that are notably more sensitive in the wet state than in

the dry state. Both models reveal that the parameters describing background sources

(PSRC, BCNST) and first-order decay (FSTDEC, WDPRCH) are more sensitive in the dry

state, when the system has less water and these parameters have a greater effect on the

model output. The results also show that the observed increase in concentrations in wet

conditions are modeled in HSPF as contributions from interflow and in SWAT as a function

of a rainfall-runoff terrestrial process. In reality the process is a complex combination of

both phenomena and therefore neither model accounts for both processes appropriately.

Finally, in light of model uncertainty, the wet and dry analysis further revealed that certain

parameters and/or process equations can be reduced or completely removed from

consideration, simultaneously reducing parameter and structural uncertainty while not

affecting overall model performance. A reduction in uncertainty may be particularly useful

in dry conditions when only in-stream processes are actually active.

Future research can extend the wet/dry analysis to reveal more of the natural processes

occurring and then to refine the models to reflect those processes. Extensive data collection

relating specifically to bacteria concentrations in wet and dry states would clearly be a

major asset and should be one of the first steps taken.
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Chapter 7

Model Combinations

7.1 BACKGROUND

This study examines several methods of combining the models presented thus far to attain

an overall better fit to the data. The first section provides a framework for integrating the

water-quality component of the CC model with the hydrological components of HSPF and

SWAT. The second section provides two methods for combining the outputs of HSPF and

SWAT to achieve a higher NSEln.

7.2 HSPF-CC AND SWAT-CC MODEL INTEGRATION

7.2.1 Theory

An additional application of the CC approach is to use it as a water-quality model in

combination with the hydrological components of models like HSPF and SWAT. The

CC-combination model can be formulated as (Chin 2011):

105
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Cj =
�

Qr, j

Q j

�
Cr +

�
Qi, j

Q j

�
Ci +

�
Qb, j

Q j

�
Cb (7.1)

where the subscript j is the time index, Cj is the predicted concentration, Q j is the total

streamflow, Qr, j is the surface-runoff component, Qi, j is the interflow component, Qb, j is

the baseflow component, and cr, ci, and cb are the surface-runoff, interflow, and base-flow

characteristic concentrations, respectively. The flow quantities Q j, Qr, j, Qi, j, and Qb, j are

derived from the hydrology output of HSPF and SWAT. Using these HSPF-CC and

SWAT-CC model formulations, a calibration was performed to find values of cr, ci, and cb

that yield the best match between the log-scaled model predictions (Cj) and the log-scaled

data. The calibration results of these models, along with the NSEln and p value are included

in Table 7.1.

7.2.2 Results and Discussion

A breakdown of the flow volumes produced by the different models is shown in Table 7.2,

where the HSPF and SWAT models shown for each catchment are the calibrated models

discussed previously. It can be seen that the total volumes produced in HSPF and SWAT are

of the same order of magnitude and nearly the same value as the flow record for the

seven-year period considered. In all cases, HSPF over-predicted the total flow volume and

SWAT over-predicted in Catchment K and under-predicted in I, J, and O. The distribution of

flow volume between runoff (Vr), interflow (Vi), and baseflow (Vb) reveals some of the

differences in the HSPF and SWAT model structure. HSPF tends to generate little runoff

volume (0-19%) and assigns a significant proportion (21-67%) of the total volume to

interflow. This distribution of flow in HSPF is a direct representation of Figure 3.2 for larger

areas. SWAT places a greater emphasis on runoff volume (16-33%) and a smaller emphasis

on interflow (5-19%). The baseflow volumes in HSPF and SWAT range from 33-60% and

59-76%, respectively. The baseflow volume percentages, or baseflow index (BFI), can be



www.manaraa.com

107

Ta
bl

e
7.

1:
C

C
In

te
gr

at
io

n
M

od
el

R
es

ul
ts

an
d

B
ac

te
ria

Lo
ad

D
is

tri
bu

tio
ns

C
on

ce
nt

ra
tio

ns
(C

FU
/1

00
m

L)
B

ac
te

ria
lo

ad
s

(×
10

13
C

FU
)(

%
)

C
at

ch
m

en
t

M
od

el
N

SE
ln

p
c r

c i
c b

M
r

M
i

M
b

M
0†

M

I

H
SP

F
0.

24
3

0.
74

-
-

-
35

9
(9

3)
25

.2
(7

)
-

0.
55

(0
)*

38
4

SW
AT

0.
27

5
0.

86
-

-
-

15
2

(7
0)

-
-

64
.7

(3
0)

21
7

H
SP

F-
C

C
0.

09
0

0.
71

10
00

0‡
48

2
15

0
3.

16
(7

)
37

.6
(7

8)
7.

25
(1

5)
-

48
.0

SW
AT

-C
C

0.
25

4
0.

09
16

07
30

1
12

7
51

.1
(8

0)
2.

14
(4

)
10

.4
(1

6)
-

63
.7

C
C

-S
I

0.
32

9
0.

03
17

77
-

88
91

.6
(9

3)
-

6.
39

(7
)

-
98

.0
C

C
-F

I
0.

43
9

0.
00

2
26

68
-

99
14

0
(9

5)
-

7.
08

(5
)

-
14

7
C

C
-L

M
0.

21
7

0.
36

66
2

-
11

4
42

.6
(8

6)
-

6.
82

(1
4)

-
49

.4

J

H
SP

F
0.

26
3

0.
57

-
-

-
0.

16
(1

)
21

.5
(9

9)
-

0.
06

(0
)*

21
.7

SW
AT

-1
.6

71
3E

-4
-

-
-

13
9

(9
8)

-
-

2.
12

(2
)

14
1

H
SP

F-
C

C
0.

23
7

0.
48

51
55

6
97

6E
-3

(0
)*

21
.0

(9
2)

1.
82

(8
)

-
22

.9
SW

AT
-C

C
0.

33
8

0.
24

24
2

10
8

91
2

1.
57

(6
)

0.
87

(3
)

24
.5

(9
1)

-
26

.9
C

C
-S

I
0.

32
5

0.
01

91
0

-
65

23
.8

(9
3)

-
1.

85
(7

)
-

25
.7

C
C

-F
I

0.
40

2
0.

20
84

5
-

73
22

.4
(9

2)
-

2.
05

(8
)

-
24

.5
C

C
-L

M
0.

28
1

0.
23

47
7

-
81

15
.3

(8
9)

-
1.

82
(1

1)
-

17
.1

K

H
SP

F
0.

38
7

0.
92

-
-

-
3.

59
(1

3)
23

.7
(8

6)
-

0.
32

(1
)

27
.6

SW
AT

0.
33

4
0.

48
-

-
-

40
.6

(8
6)

-
-

6.
75

(1
4)

47
.3

H
SP

F*
*

0.
35

-
-

-
-

6.
9

(4
4)

4.
7

(3
0)

-
4.

0
(2

6)
15

.6
SW

AT
**

0.
12

-
-

-
-

11
2

(9
3)

-
-

7.
98

(7
)

12
0

H
SP

F-
C

C
0.

05
0

0.
46

1
47

4
18

0
4E

-4
(0

)*
8.

22
(6

7)
4.

00
(3

3)
-

12
.2

SW
AT

-C
C

0.
25

6
0.

63
16

73
47

3
11

9
11

.4
(7

3)
0.

95
(6

)
3.

37
(2

1)
-

15
.7

C
C

-S
I

0.
27

7
0.

11
11

10
-

95
15

.8
(8

8)
-

2.
12

(1
2)

-
17

.9
C

C
-F

I
0.

37
0

0.
00

4
12

43
-

92
17

.9
(9

0)
-

2.
03

(1
0)

-
19

.9
C

C
-L

M
0.

30
2

0.
19

89
4

-
86

16
.5

(9
1)

-
1.

55
(9

)
-

18
.1

O

H
SP

F
0.

34
2

0.
21

-
-

-
16

.2
(6

4)
8.

96
(3

6)
-

0.
05

(0
)*

25
.2

SW
AT

-0
.0

28
0.

10
-

-
-

13
8

(9
6)

-
-

5.
65

(4
)

14
4

H
SP

F-
C

C
0.

26
4

0.
06

1
19

14
3

11
9

6E
-3

(0
)*

12
2

(9
8)

2.
17

(2
)

-
12

4
SW

AT
-C

C
0.

31
6

0.
60

65
70

13
9

10
6

62
.8

(9
6)

0.
33

(1
)

1.
84

(3
)

-
65

.0
C

C
-S

I
0.

37
0

0.
10

22
57

-
63

31
.1

(9
7)

-
1.

00
(3

)
-

32
.1

C
C

-F
I

0.
29

7
0.

92
10

87
-

77
15

.2
(9

3)
-

1.
21

(7
)

-
16

.4
C

C
-L

M
0.

39
5

0.
68

91
3

-
66

14
.9

(9
4)

-
0.

88
(6

)
-

15
.8

†-
ba

ck
gr

ou
nd

lo
ad

s
de

riv
ed

fr
om

PS
R

C
(H

SP
F)

an
d

B
C

N
ST

(S
W

AT
)m

od
el

pa
ra

m
et

er
s

*-
ac

tu
al

%
is

no
nz

er
o

bu
tl

es
s

th
an

0.
5%

an
d

th
er

ef
or

e
ro

un
ds

to
ze

ro
‡-

In
th

is
ca

se
c r

w
as

re
la

tiv
el

y
in

se
ns

iti
ve

an
d

a
ce

ili
ng

of
10

,0
00

(C
FU

/1
00

m
L)

w
as

im
po

se
d

**
-C

at
ch

m
en

tK
m

od
el

re
su

lts
fr

om
C

hi
n

(2
01

1)



www.manaraa.com

108

Ta
bl

e
7.

2:
M

od
el

Fl
ow

D
is

tri
bu

tio
n

C
at

ch
m

en
t

M
od

el
N

SE
D

V
r

(×
10

6
m

3 )(
%

)
V

i
(×

10
6

m
3 )(

%
)

V
b

(×
10

6
m

3 )(
%

)
V

(×
10

6
m

3 )
B

FI

I

H
SP

F
0.

88
4

0.
3

(0
)*

78
.0

(6
2)

48
.4

(3
8)

12
6.

7
0.

38
SW

AT
0.

59
5

31
.8

(2
6)

7.
1

(6
)

82
.2

(6
8)

12
1.

1
0.

68
C

C
-S

I
1.

00
51

.5
(4

2)
-

72
.6

(5
8)

12
4.

2†
0.

55
C

C
-F

I
1.

00
52

.6
(4

2)
-

71
.6

(5
8)

12
4.

2
C

C
-L

M
1.

00
64

.3
(5

2)
-

59
.8

(4
8)

12
4.

2†

J

H
SP

F
0.

88
0

0.
1

(0
)*

37
.8

(6
7)

18
.8

(3
3)

56
.7

0.
33

SW
AT

0.
62

6
6.

5
(1

6)
8.

0
(1

9)
26

.9
(6

5)
41

.4
0.

65
C

C
-S

I
1.

00
26

.2
(4

8)
-

28
.4

(5
2)

54
.6

0.
48

C
C

-F
I

1.
00

26
.5

(4
9)

-
28

.0
(5

1)
54

.6
†

C
C

-L
M

1.
00

32
.1

(5
9)

-
22

.5
(4

1)
54

.6

K

H
SP

F
0.

89
7

0.
4

(1
)

17
.4

(4
3)

22
.2

(5
6)

40
.0

0.
56

SW
AT

0.
67

0
6.

8
(1

8)
2.

0
(5

)
28

.3
(7

6)
37

.1
0.

76
H

SP
F*

*
0.

90
0.

3
(1

)
19

.1
(4

8)
20

.6
(5

2)
39

.9
0.

52
SW

AT
**

0.
67

8.
5

(2
2)

2.
7

(7
)

27
.9

(7
1)

39
.1

0.
71

C
C

-S
I

1.
00

14
.2

(3
9)

-
22

.3
(6

1)
36

.5
0.

57
C

C
-F

I
1.

00
14

.4
(3

9)
-

22
.1

(6
1)

36
.5

C
C

-L
M

1.
00

18
.5

(5
1)

-
18

.0
(4

9)
36

.5

O

H
SP

F
0.

94
1

5.
6

(1
9)

6.
4

(2
1)

18
.2

(6
0)

30
.2

0.
60

SW
AT

0.
69

3
9.

6
(3

3)
2.

3
(8

)
17

.3
(5

9)
29

.2
0.

59
C

C
-S

I
1.

00
13

.8
(4

6)
-

15
.9

(4
6)

29
.6

†
0.

51
C

C
-F

I
1.

00
14

.0
(4

7)
-

15
.7

(4
7)

29
.6

†
C

C
-L

M
1.

00
16

.4
(5

5)
-

13
.3

(4
5)

29
.6

†
†-

V
r/V

i/V
b

co
m

po
ne

nt
s

do
no

ts
um

to
V

as
sh

ow
n

du
e

to
ro

un
di

ng
er

ro
ra

t1
06

m
3

m
ag

ni
tu

de
*-

ac
tu

al
%

is
no

nz
er

o
bu

tl
es

s
th

an
0.

5%
an

d
th

er
ef

or
e

ro
un

ds
to

ze
ro

**
-C

at
ch

m
en

tK
m

od
el

re
su

lts
fr

om
C

hi
n

(2
01

1)



www.manaraa.com

109

compared using the CC (USGS) hydrograph separation methods as a benchmark and are

shown together in Table 7.2, where the BFI shown for the CC models is the average BFI of

the three methods. In Catchments I, J, and K, HSPF has the lowest BFI, SWAT has the

highest BFI, and the CC models are in between, while in Catchment O HSPF and SWAT are

nearly equal and both are greater than the CC models. On one hand, HSPF generates a

noticeably higher NSED than SWAT in each catchment, indicating that it more-closely

matches the streamflow on a daily basis. On the other hand, Bosch et al. (2005) report that

for a five-year study period the surface runoff and lateral subsurface flow for a study plot in

the LREW were in the range 5-40% and 2-23% of annual precipitation (Note: not

percentage of streamflow as shown in Table 7.2), respectively, depending on agricultural

land-tilling practices. This data implies that while interflow in the LREW can occur in

notable quantities, the high percentage as modeled by HSPF is probably not realistic.

Although SWAT is more successful at replicating the realistic runoff and interflow

quantities, it overestimates the BFI and in general is less able to replicate the streamflow

record as evidenced by the lower NSED. These hydrology results in HSPF and SWAT show

that while the models satisfactorily replicate the streamflow on daily (NSED) and monthly

(NSEM) bases, the breakdown of flow components contributing to the total flow may not be

accurate or realistic. These results have an additional effect on the water-quality

components of the models, since the water-quality predictions are dependent on the

hydrology components of the models. The CC models have an NSED of 1.00 since they use

the actual streamflow data. Of the three methods, the LM method consistently generates the

lowest baseflow and highest runoff volumes, while the SI and FI are nearly identical. The

Chin (2011) study only examined Catchment K, and the results are included in Table 7.2 as

a reference. Although the models in Chin (2011) used different HSPF and SWAT model

parameterizations the flow distribution is nearly identical to the models considered here.

A breakdown of the water-quality model performances is shown in Table 7.1, where the

NSEln, characteristic-concentration parameters, and distribution of bacteria loads are shown
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for all the models. The HSPF models show little consistency in the breakdown of runoff

(Mr), interflow (Mi), and background (M0) bacteria loads, other than the background load

being a small portion of the total. The runoff load, (Mr), varies from 1-93% of the total

load, while the interflow load, (Mi), varies from 7-99% of the total load. The SWAT models

show a more consistent pattern of load distribution, where the runoff load, (Mi), is 70-98%

of the total bacteria load. The more consistent load distribution shown by SWAT is partially

due to the simpler model formulation, where SWAT does not permit bacteria loads in

subsurface flow and the total load M must therefore come from either surface runoff (Mr) or

background (M0) sources. Although HSPF provides an additional component for modeling

and analysis with the inclusion of the interflow term, the extra term does not appear to

induce consistent results with respect to the distribution of loads. The loading results for

Catchment K from Chin (2011) are included in Table 7.1 as a reference. The HSPF models

show order-of-magnitude agreement, while the SWAT model in Chin (2011) has a larger

total load (M) and runoff load (Mr) but a similar percentage distribution between runoff

(Mr) and background (M0) sources as the model in this study. While it is acknowledged that

bacteria concentrations in interflow may be nonzero, it is unlikely that the high percentages

modeled in HSPF and HSPF-CC and shown in Table 7.1 are realistic. On the contrary, it has

been shown throughout this dissertation that terrestrial sources may not have a significant

effect on in-stream concentrations, meaning that the high percentages in the runoff loads,

particularly in SWAT and the CC model, are more a manifestation of the model structure

instead of a realistic estimate. The most physically realistic scenario is one with an

interflow term like HSPF, a more consistent runoff contribution like in SWAT yet with a

lower percentage of the total load, and a larger percentage of the total load coming from the

background and in-stream sources.

The HSPF-CC models produce noticeably lower NSEln values than HSPF in Catchments I

and K, and comparable NSEln values in J and O. The CC parameters in the HSPF-CC

model (Table 7.1) reveal small runoff values (cr), and interflow values (ci) greater than
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baseflow values (cb). The lone exception is Catchment I, where the cr parameter was

insensitive and a ceiling of 10,000 (CFU/100mL) was imposed on the parameter (without

affecting the performance), to facilitate calibration. The low values of cr and small

contribution of runoff load (Mr) to the total bacteria load (M) as shown in Table 7.1 are a

reflection of the small overall contribution of runoff volume (Vr) to total volume (V ) as

previously discussed and shown in Table 7.2. It is worth noting that the parameter

sensitivity analysis from Chapter 5 revealed that the in-stream parameters IOQC and PSRC

were the most sensitive water-quality parameters in HSPF. These two parameters are

directly related to the interflow (Mi) and background (M0) loads, respectively. Although

PSRC is sensitive it does not contribute more than 1% of the load in any catchment.

The SWAT-CC models achieve similar NSEln values to the SWAT models in Catchments I

and K, and noticeably improve the negative NSEln values of SWAT in Catchments J and O.

In Catchments I, K, and O, the SWAT-CC model yields cr parameters roughly one order of

magnitude greater than ci and cb, and ci is greater than cb. Likewise, in these three

catchments, the runoff loading (Mr) is 73-96% of the total bacteria load (M). The SWAT-CC

model in Catchment J does not fit this (expected) trend but rather assigns a high value to the

baseflow concentration (cb), resulting in a large (91%) contribution of baseflow load (Mb) to

the total bacteria load (M). While this result may seem unconventional, the SWAT-CC

model achieves an NSEln of 0.338 while the corresponding SWAT model has an NSEln of

-1.671. This result reveals that including subsurface bacteria concentrations in SWAT may

noticeably improve the model in certain cases. The sensitivity analysis from Chapter 5

showed that the direct source parameter (BCNST) was one of the sensitive parameters, but

the load derived from it (M0) is 30% of the total load in Catchment I and between 2-7% in

Catchments J, K, and O.

The 2-parameter CC models from Chapter 5 are also included in Table 7.1. These CC

models perform consistently regarding the load distribution in all cases, where the NSEln
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values range from 0.217-0.439, the cr parameter is greater than cb, and the runoff loading,

Mr, is 86-97% of the total bacteria load (M).

As a further measure of model performance, the expected frequency distributions of

in-stream bacteria concentrations were determined and are shown in Figure 7.1, where

Catchment O was selected as an example due to the high NSEln values in the HSPF,

HSPF-CC and CC-LM models, and Catchment I was selected as an example due to the high

NSEln values in the SWAT, SWAT-CC, and CC-LM models. Due to the random component
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Figure 7.1: Predicted and measured frequency distributions- data measurement days

in the CC model formulation (Eqs. 3.30 and 3.31), the frequency distributions shown in the

HSPF-CC, SWAT-CC and CC-LM models are ensemble-averaged distributions from 500

runs. The frequency distributions shown in Figure 7.1a reveal that all three models closely

represent the data up to the 80th percentile, after which the HSPF-CC and CC-LM models

are similar and more-successfully replicate concentrations of higher magnitude while the

HSPF model more closely approximates the data in the range 1000-3000 CFU/100mL. The

frequency distributions shown in Figure 7.1b reveal that the SWAT, SWAT-CC, and CC-LM

models closely represent the data up to the 50th percentile. All three models under-predict
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the data to around the 90th percentile, after which the models again closely approximate the

data at higher magnitudes.

While the frequency distributions shown in Figure 7.1 reflect only the days on which the FC

data was collected, the frequency distributions shown in Figure 7.2 for Catchments I and K

reflect the entire 7-year calibration period. The HSPF and SWAT distributions shown were
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(b) Catchment K

Figure 7.2: Predicted frequency distributions- entire study period

derived from the model predictions of the calibrated models from Chapter 5, while the

CC-LM model was derived from an ensemble average after 500 runs. It can be seen clearly

that the CC-LM model in both catchments best replicates the data to the 80th-percentile,

and in Catchment I better approximates the data than either HSPF or SWAT, while in

Catchment K both HSPF and SWAT better approximate the data at higher magnitudes. In

comparing the frequency distributions of the SWAT models in Catchment I, as shown in

Figure 7.1b and 7.2a, it is clear that a bias is induced in only considering the days of data

measurements, and that the entire record includes more concentrations of higher magnitude

than those reflected on only the data days.
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7.2.3 Conclusions: CC Model Integration

The HSPF-CC and SWAT-CC model integration technique provides a straightforward way

to incorporate the characteristic concentration water-quality model into the established

hydrological frameworks of HSPF and SWAT. The HSPF-CC model provided similar

NSEln values to the HSPF model in two of the four catchments considered while the

SWAT-CC model provided similar NSEln values in two catchments and notably improved

the NSEln in two catchments. The HSPF-CC and SWAT-CC approach also quantifies how

the models distribute flow volumes and bacteria loadings between runoff, interflow, and

baseflow (Tables 7.1 and 7.2). The distribution of flow is a reflection of the calibrated

hydrology components of the models and is particularly important since the bacteria

prediction capability of the water-quality components is dependent on the hydrology

components. In this sense the HSPF models in particular, with an unusually high ratio of

interflow (Vi) to runoff (Vr), likely do not adequately model the runoff and groundwater

flows and therefore may compromise the water-quality components of the model. The exact

distribution of flow as shown in Table 7.2 is likely complicated by parameter correlation in

the hydrology components of of the models as mentioned in Chapter 5. Finally, it was

shown that the HSPF-CC and SWAT-CC model integrations were simply formulated, the

integrated models used fewer parameters than the HSPF and SWAT models, and the

integrated models achieved similar or better results than the corresponding HSPF and

SWAT models. These results show that the CC model can be an attractive additional option

for water-quality models, and may even be included as an external module within the HSPF

and SWAT models for future applications.

7.3 SYNTHESIS OF MODEL OUTPUT

One way to attain improved model predictions is by using a multi-model framework, where

the outputs of two or more models are combined using a weighting scheme to achieve a
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result better than any of the individual input models. The multi-model approach does not

directly change the structural components of the input models, but rather finds an optimal

combination of the model outputs to arrive at an improved set of predictions that better fits

the data. This study examines two weighting schemes for combining HSPF and SWAT to

attain improved model predictions: an NSEln optimization technique and the use of

Artificial Neural Networks (ANN).

7.3.1 NSEln Optimization

Theory

The first approach is to optimize a combination of HSPF and SWAT to achieve a higher

NSEln than the individual models. The procedure is described by (Chin et al. 2009)

CPi = aHi +(1−a)Si (7.2)

where CPi is the combined prediction at time step i, Hi and Si are the corresponding

predictions by HSPF and SWAT respectively, and a is a weighting factor between zero and

one. Using this multi-model relationship in the definition of the NSE yields:

NSE = 1− ∑N
i=1[Mi−aHi− (1−a)Si]2

∑N
i=1(Mi−M)2

(7.3)

where Mi is the measurement at time step i, and Mi is the average of the N measurements.

Taking the derivative of Equation 7.3 with respect to a gives the optimal value of a for

weighting the models:

dNSE
da

= 0 ⇒ a = ∑N
i=1(Mi−Si)(Hi−Si)

∑N
i=1(Si−Hi)2

(7.4)
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It can be further shown that

d2NSE
da2 =−

N

∑
i=1

(Si−Hi)2 < 0 (7.5)

guaranteeing that using the value of a given by Equation 7.4 will maximize the NSE and

will be greater than (or equal to, if a = 1.0 or 0) the NSE value from an individual model.

While the above derivation was presented in terms of NSE, the NSEln can be found by

using the log-transformed values of HSPF and SWAT in Equations 7.3 as follows:

NSEln = 1− ∑N
i=1[Mi−a lnHi− (1−a) lnSi]2

∑N
i=1(Mi−M)2

(7.6)

Results and Discussion

The NSEln optimization approach was used with HSPF and SWAT for the entire FC data set

(“all”) as well as the wet and dry models. The results are presented in Table 7.3, where the

weighting factors a and 1−a are shown along with the initial model NSEln and the

Table 7.3: NSEln Optimization Multi-Model Summary

Catchment Previous NSEln Multi-Model Results
HSPF SWAT % HSPF (a) % SWAT (1-a) Optimized NSEln

I all 0.243 0.275 0.47 0.53 0.422
J all 0.263 -1.67 0.93 0.07 0.272
K all 0.383 0.334 0.56 0.44 0.471
O all 0.342 -0.028 0.75 0.25 0.390
I wet 0.313 0.588 0.11 0.89 0.593
J wet 0.370 -1.31 1.00 0.00 0.370
K wet 0.438 0.592 0.31 0.69 0.632
O wet 0.484 0.066 1.00 0.00 0.484
I dry 0.120 -0.432 0.68 0.32 0.278
J dry -0.436 -2.84 0.80 0.20 -0.258
K dry 0.295 0.260 0.56 0.44 0.357
O dry -0.168 0.152 0.22 0.78 0.179
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optimized multi-model NSEln. The NSEln optimization multi-model approach provided an

improved NSEln over either HSPF or SWAT independently in all cases except for the wet

models in Catchments J and O, where a = 1.00. The improvements were greatest when the

initial models were weighted nearly evenly (a near 0.50) such as in Catchments I and K or

the dry model of Catchment K. Conversely, the NSEln optimization approach achieved less

significant improvements in NSEln when one input model was heavily favored (a near 1.00

or 0), such as in the wet models of Catchments J and O, in the dry model of Catchment O,

or in Catchment J.

The HSPF weighting factor a can be used as a simple parameter to compare model

performance. Of the twelve model scenarios considered in Table 7.3, a was greater than

0.50 eight times, indicating that HSPF outperformed SWAT two-thirds of the time. It should

be stated that SWAT did not perform well in Catchment J under any circumstances,

achieving a negative NSEln under “all”, wet, and dry conditions. It should also be noted that

there is a variety of values of a, both between catchments and throughout hydrological

states. The lack of a consistent or predictable pattern of weighting the models is a further

reflection on the difficult and unpredictable nature of bacteria modeling. An example of this

complexity can be seen in Catchment I, where the models are weighted roughly equal (a =

0.47) under normal conditions, but where SWAT performs noticeably better under wet

conditions (a = 0.11) and HSPF performs better under dry conditions (a = 0.68). Similarly,

a = 1.00 in the wet model of Catchment O while a = 0.22 in the dry model of Catchment O.

The HSPF, SWAT, and NSEln optimized model predictions are compared with

corresponding measurements for Catchments I and K in Figure 7.3, where the abscissa is

the log-scaled FC data and the ordinate is the log-scaled model predictions. The solid line in

the figures has a slope of 1 and represents a perfect model prediction whereas the dashed

line indicates order-of-magnitude agreement. It is clear in Figure 7.3 that the NSEln

optimization technique yields model predictions that are between the HSPF and SWAT
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(b) Catchment K

Figure 7.3: HSPF, SWAT, and NSEln-optimized model results- log-scaled predictions

predictions at each point and always closer to the line of perfect prediction than the model

with the largest residual at that point. Since the magnitude of the HSPF and SWAT model

residuals vary at each point, and one model is not consistently better or worse than the other

model at each point, the multi-model framework guarantees a higher NSEln over the course

of the whole data set.

7.3.2 Artificial Neural Networks

Background

Artificial Neural Networks (ANN) are a form of artificial intelligence model that is

designed to replicate the processes of the human neurological system (Neelakantan et al.

2001). ANNs are advantageous in that they generally have fewer data requirements and

have been shown to solve complex, non-linear problems where the modeled relationships

between variables are not well understood (Yu et al. 2004; Singh et al. 2009; Brion and

Lingireddy 2003). Several studies have used ANNs successfully in modeling the complex

environmental fate and transport processes of bacteria and other water-quality constituents
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(e.g. Singh et al. 2009; Brion et al. 2002; Brion and Lingireddy 2003; Neelakantan et al.

2001; Ying et al. 2007; Sakura-Lemessy 2009). However, despite the powerful adaptability

of an ANN there is concern that the “black-box” nature of an ANN, where little is

understood of exactly how the complex inner-workings of the network produce the output

from the input, does not reveal or replicate actual processes and therefore the networks

should be used carefully before deducing any physical meaning (e.g. Prada-Sarmiento and

Obregón-Neira 2009; Brion et al. 2002; Troutman 1985).

This portion of the research was not intended to be a comprehensive overview of ANNs but

rather an example of how an ANN designed from standard practices and recommendations

in the literature can be used in a multi-model combination context for bacterial

water-quality modeling. All networks considered in this study employed a feedforward

network structure with back-propagation of errors. The feedforward network is one of the

most popular and important ANN structures and back-propagation is a popular training

algorithm (Schalkoff 1997; Brion and Lingireddy 1999). Feedforward network structure has

an input layer, zero or more hidden layers, and an output layer. Input layers serve to hold

the input values and distribute them to nodes in the next layer. Although the number of

hidden layers is unlimited, a single hidden layer is typically adequate (Weijters and

Hoppenbrouwers 1995). Each layer has at least one node, and the nodes of each layer are

linked to each node of the next higher layer, with no connections between non-successive

layers (Weijters and Hoppenbrouwers 1995). A weight is applied to each link, and a bias

(also considered a weight) is applied to each node as an additional method to adjust

network performance. Singh et al. (2009) recommend between (2N1/2) to (2N+1) nodes in

the hidden layer, where N is the number of input nodes and M is the number of output

nodes, while Brion et al. (2002) and Neelakantan et al. (2001) recommend a N:2N:1

network architecture for water-quality models.
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The weights applied to each link vary and are the primary parameters affecting network

output, and training is the process by which these weights are calibrated (Schalkoff 1997;

Brion and Lingireddy 2003). ANNs, in fact, are not programmed to model something but

are trained to do so, where training a network is the process of adjusting the weights in

response to incorrect results (Weijters and Hoppenbrouwers 1995). Schalkoff (1997)

provides the following steps for training a feedforward back-propagation network:

1. Initialize all unit weights in the network.

2. Apply an input (stimulus) vector to the network.

3. Feed forward or propagate the input vector to determine all unit outputs.

4. Compare unit responses in the output layer with the desired or target response.

5. Compute and propagate an error sensitivity measure backward (starting at the output

layer) through the network, using this as the basis for weight correction.

6. Minimize the overall error at each stage through unit weight adjustments.

In other words, the network is initialized and run forward to obtain an output. The error of

the output relative to the data is computed, and if that error is not acceptable, the linking

weights are adjusted by starting with the last layer and working towards the input layer. The

network is run again, and the procedure is repeated until an acceptable error is attained or a

maximum number of iterations has been reached.

The hidden and output layers have a transfer function which governs the input-output

relationship for the layer. Common transfer functions for the hidden layers are the

hyperbolic tangent sigmoid transfer function (TANSIG)

TANSIG(n) =
2

1+ exp(−2n)
−1 (7.7)

and the log sigmoid transfer derivative function (LOGSIG)
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LOGSIG(n) =
1

1+ exp(−n)
(7.8)

where n is the input to the hidden layer. The TANSIG function compresses any input into

the range [-1 1] while the LOGSIG function compresses any input into the range [0 1]. A

commonly used transfer function for the output layer is the linear transfer derivative

function (PURELIN), which, unlike TANSIG and LOGSIG does not restrict output to a

range but rather allows the outputs to take on any value (Demuth and Beale 2002; Ying

et al. 2007; Postma 1995).

The ANNs used in this study were built in Matlab (2011a) using the “nftool” in the Neural

Network (NN) Toolbox, and a visual example of the ANN as constructed in Matlab can be

seen in Figure 7.4. In accordance with the N:2N:1 recommendation, the networks were built

with a 2:4:1 architecture, where the HSPF and SWAT model outputs were the two network

Figure 7.4: Neural Network Portrayed in Matlab

inputs. A 2:4:1 architecture yields a total of 17 weights and biases that must be calibrated in

the training process (‘w’ and ‘b’ in Figure 7.4): four weights from each input to each node

in the hidden layer (8), one bias to each node in the hidden layer (4), a weight from each

node in the hidden layer to the output layer (4), and a bias to the output layer (1). The model

outputs were log-transformed before being used as inputs to the ANNs, because it was

found through trial and error that the non-transformed versions frequently resulted in

imaginary numbers. The networks used the LOGSIG transfer function in the input layer and
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the PURELIN transfer function in the output layer. Convergence of the training occurred

when the default minimum gradient was met or after 1,000 iterations. ANN studies

typically divide a data set into portions to use in training,validating, and testing the network,

where the assignment of data into these sections is done randomly and usually varies

between runs of the same network (e.g. Yu et al. 2004). For example, the default data

distribution settings in the Matlab NN tool is 70%, 15%, 15% for training, validating, and

testing, respectively. In this study, however, since the data limitations were already

significant and therefore difficult to further divide, and since the desired output was the

calibrated/trained network and not the predictions of a trained and validated model, all of

the FC data was used in the training of the ANN. Although the randomness due to the

division of the data was removed from this analysis, the use of the ANNs still included a

random element. The randomness comes from the common and efficient Nguyen-Widrow

initialization algorithm, used as a default to initialize the weights and biases at the

beginning of each network run (Step 1 above) (Demuth and Beale 2002).

Results and Discussion

Since each network was initialized differently, ten runs were made per catchment and

hydrologic state, and the results of the three best networks are presented in Table 7.4. The

three best networks were selected as the three highest NSEln values with acceptable

p-values for normality of residuals. The approach implemented here was similar to that

used by Ying et al. (2007).

The best network of all the considered scenarios from Table 7.4 is shown in Table 7.5 with

the corresponding HSPF and SWAT models. The results shown in Table 7.5 reveal that in

all cases the ANNs greatly improved the input HSPF and SWAT estimates of NSEln. The

ANNs were also able to improve the multi-model estimate in all cases derived from the



www.manaraa.com

123

Table 7.4: Summary of Neural Networks

Catchment Trial NSEln

I
1 0.809
2 0.734
3 0.615

J
1 0.722
2 0.741
3 0.746

K
1 0.718
2 0.681
3 0.714

O
1 0.763
2 0.764
3 0.762

I Wet
1 0.874
2 0.900
3 0.884

J Wet
1 0.879
2 0.882
3 0.878

K Wet
1 0.931
2 0.934
3 0.935

O Wet
1 0.931
2 0.934
3 0.935

I Dry
1 0.867
2 0.772
3 0.848

J Dry
1 0.838
2 0.565
3 0.695

K Dry
1 0.947
2 0.973
3 0.935

O Dry
1 0.945
2 0.973
3 0.935
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Table 7.5: HSPF, SWAT, and ANN Summary

Catchment Model NSEln

I
HSPF 0.243
SWAT 0.275
ANN 0.809

J
HSPF 0.263
SWAT -1.67
ANN 0.746

K
HSPF 0.387
SWAT 0.334
ANN 0.718

O
HSPF 0.342
SWAT -0.028
ANN 0.764

I Wet
HSPF 0.313
SWAT 0.588
ANN 0.900

J Wet
HSPF 0.370
SWAT -1.306
ANN 0.882

K Wet
HSPF 0.438
SWAT 0.592
ANN 0.935

O Wet
HSPF 0.484
SWAT 0.066
ANN 0.935

I Dry
HSPF 0.120
SWAT -0.432
ANN 0.867

J Dry
HSPF -0.436
SWAT -2.84
ANN 0.838

K Dry
HSPF 0.295
SWAT 0.260
ANN 0.973

O Dry
HSPF -0.168
SWAT 0.152
ANN 0.973
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NSEln optimization (Table 7.3). The most significant improvement is in both the wet and

dry states, where NSEln values above 0.9 are commonly achieved.

The HSPF, SWAT, and ANN model predictions are compared with corresponding

measurements for Catchment I (ANN NSEln = 0.809) and the dry model in Catchment K

(ANN NSEln = 0.973) in Figure 7.5, where the abscissa is the log-scaled FC data and the

ordinate is the log-scaled model predictions. The solid line in the figures has a slope of 1
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(b) Catchment K-Dry

Figure 7.5: HSPF, SWAT, and ANN model results- log-scaled predictions

and represents a perfect model prediction whereas the dashed line indicates

order-of-magnitude agreement. It is obvious in the figure that the ANN predictions are

much closer to the line of perfect prediction, which is a reflection of the higher NSEln. This

is particularly true in Figure 7.5b, where the dry model of Catchment K has an NSEln of

0.973. It is also interesting to note that while the ANN predictions tend to over-predict at

low values and under-predict at high values (better seen in Fig. 7.5a), a behavior derived

from the input HSPF and SWAT models, there is no consistent or predictable pattern

regarding the magnitude of the ANN model residual relative to the magnitudes of the HSPF

and SWAT model residuals. This is in sharp contrast with the NSEln optimization method as



www.manaraa.com

126

shown in Figure 7.3, where the multi-model predictions are always between the HSPF and

SWAT predictions.

A commonly used metric for evaluating the efficiency of models is the Akaike Information

Criterion (AIC), described by (Akaike 1974):

AIC =−2logML+2P (7.9)

where ML is the value of the maximum likelihood attained by a model and P is the number

of independently adjusted parameters within a model. Coincidentally, the HSPF (11

hydrology and 6 water quality) and SWAT (10 hydrology and 7 water quality) models

considered here both have a total of 17 parameters. Therefore, since P in Equation 7.9 is the

same in both models, the AIC then only reflects differences in the maximum likelihood

attained by the models. Since the NSEln serves as a similar reflection on the maximum

likelihood attained by the models, the inclusion of the AIC metric is redundant and will not

be considered further. Comparing the ANN model performance with HSPF and SWAT,

however, is not a direct comparison since an ANN is dependent on HSPF and SWAT as an

input and not an independent watershed model in itself. Nonetheless, the AIC of the ANNs

also reduces to a reflection of the maximum likelihood since the ANNs considered have a

2:4:1 architecture with 17 parameters. Therefore, the efficiency of the models considered

throughout this research is best reflected by the NSEln value.

7.3.3 Conclusions: Model Synthesis

The NSEln optimization and ANN model combination methods both showed significant

capacity to provide an improved set of model predictions. However, there are two major

drawbacks to implementing these methods. First, in order to use a multi-model approach

the HSPF and SWAT models must be developed before being used as inputs for the model
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combination technique. Building models like HSPF and SWAT is a time-consuming process

requiring expertise and significant amounts of data, and it is generally rare that both models

are developed for a single project or application; the more common approach is to adopt

one of the models and focus solely on it. A model combination approach as presented here

may therefore be irrelevant to most modeling studies, simply because only one model is

used. The parameter a, however, shows that only using one model is not ideal and may be

misleading, since a well-developed and optimized model may still underperform a different

model in any given catchment. The second drawback is that the model combination

methods simply optimize a combination of the model outputs without actually changing or

improving the models. This is particularly true with the ANNs, which are black-box models

that train themselves to better fit the data instead of actually replicating natural processes.

Despite these drawbacks, however, the model-combination methods did achieve higher

NSEln values, which at the very least will provide better predictions to fit the data.

Moreover, it is possible that with further analysis of the combined model predictions,

particularly in case of the ANNs, which actually vary the predictions at each step without

taking a weighted average of the input models like the NSEln optimization method, that new

insight can be gained into the actual processes occurring.
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Chapter 8

Executive Summary

8.1 SUMMARY

The objective of this research was to examine the capacity of watershed-scale models in the

modeling of pathogen indicator bacteria. Pathogen indicator bacteria such as fecal coliforms

are the leading pollutant in U.S. waters and are of serious concern because high levels of the

bacteria indicate an increased risk of human exposure to serious, costly, and possibly fatal

illnesses. The main problems encountered in addressing FC in the environment are that

there are many sources, some of which are of a highly random and unpredictable nature,

and that the lifecycle processes of bacteria such as transport, persistance, and die-off depend

on a wide array of localized environmental factors and may vary significantly between

different bacteria strains. Deriving conclusions from these observations for universal

application is difficult to do, since the micro-scale processes that govern bacteria fate and

transport are so highly localized. Nonetheless, government authorities are and must

continue to be active in drafting and enforcing environmental policies addressing land use

and water quality, for the safety of the communities under their leadership. Watershed-scale

models are powerful analysis tools to aid in such management decisions.

128
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Watershed models, however, are not perfect and the model’s structure, parameters, and

input data all contribute to overall model prediction uncertainty. Much of the model

uncertainty can be attributed to scale, where the time scale of the data or the length scale of

the process equations must be extrapolated to other scales to be used in the model. Complex

bacteria models have been developed that incorporate the leading research ideas, but as

models become more complex the calibration of the models is more complex and the

structural, parameter, and data components of the uncertainty increase.

It is in this context- model predictions with uncertainty addressing the nation’s leading

water-quality problem- that the research in this dissertation was conducted, to examine the

current capacity of watershed-scale modeling of bacteria and to present new methods for

improving the modeling of bacteria. The research was divided into three substudies, and

conclusions of the three substudies are summarized below.

8.2 CONCLUSIONS

1. The research in Chapter 5 showed that the hydrology components of HSPF and SWAT

can be considered satisfactory for modeling daily-averaged flow while the water-quality

components of both models can be considered unsatisfactory for modeling FC. The most

sensitive parameters were those with a direct influence on in-stream processes like the

parameters describing bacteria die-off and background sources. Parameters describing

terrestrial processes were not as sensitive and were sometimes insensitive. Moreover,

process equations involving the insensitive parameters likely contributed uncertainty to the

model predictions. A Latin Hypercube analysis showed that significant parameter

uncertainty occurs in HSPF and SWAT, but that total model uncertainty is dominated by

structural uncertainty. The only way to reduce the structural uncertainty then is to change

the structure of the models. While the CC model is structurally more simple than HSPF and
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SWAT it performed comparably to the other two models and should be considered a valid

option in future bacteria modeling studies.

2. The research in Chapter 6 presented a new method of examining HSPF and SWAT’s

capacity to model bacteria based on the hydrologic state of the watershed. A wet state for

high flow and a dry state for low flow were defined based on the flow duration curve and the

water-quality models were re-calibrated based on the corresponding wet and dry FC

datasets. The wet water-quality models achieved notably better fits to the data than the dry

models. As in Chapter 5, the in-stream parameters were most sensitive, but the degree of

sensitivity was heightened in the dry state. The wet/dry modeling analysis confirms the

increase in concentrations when streamflow increases. By considering the actual flow on the

day when data was collected the wet/dry analysis presented here is a more accurate

representation of seasonal affects than considerations based on months of a calendar.

3. The research in Chapter 7 presented a framework for combining a 3-parameter CC model

water-quality component with the hydrology components of HSPF and SWAT. The

integrated CC models performed comparably in HSPF and made notable improvements in

some catchments in SWAT. Analyzing the integrated CC models revealed the distribution of

flow volumes in the models and showed how each model distributed the bacteria loading

between surface runoff, interflow, baseflow, and background sources.

Also in Chapter 7, the multi-model approaches showed how outputs of models like HSPF

and SWAT can be combined to achieve a better fit to the data. The NSEln optimization

method is a simple weighting scheme between the two models that provided an

improvement over the individual models, especially in cases where the models performed

similarly on an individual basis. The NSEln optimization method also yielded the

model-weighting parameter a, a simple evaluation of which model performed better in any

given case. The values of a for all the modeling scenarios in this dissertation (Table 7.3)

reveal that HSPF and SWAT outperform each other in different scenarios and caution
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against a single-model approach, since the optimization of one model may still

underperform another model in any given case. The Artificial Neural Networks provided an

advanced method of combining models and overall achieved notable improvements over the

individual models. Drawbacks to the multi-model approach are that at least two models like

HSPF and SWAT must first be available and that the multi-model methods are simply

black-box methods that optimize a combination of the input and do not reveal or improve

any physical processes.

8.3 RECOMMENDATIONS

1. Continue Using the Multi-Model Approach. The results presented in this dissertation

clearly show that a multi-model approach, while more time consuming, is a worthwhile

endeavor. An analysis of the results of multiple models reveals the fundamental model

prediction capacity relative to other models, may prevent the outright implementation of

results from an underperforming model, and facilitates the use of the model combination

techniques to maximize the NSEln as presented in Chapter 7.

2. Develop Improved Datasets. The FC data set used in this study had approximately

monthly FC measurements and was likely a limiting factor in this research. Ideally, bacteria

measurements would be taken on a more frequent weekly or daily basis, and information

would be simultaneously gathered describing time of day, baseflow index, and and the

weather status at the time of collection. An enhanced data set, accompanied by a thorough

characterization of the watershed with regard to bacteria sources, would provide valuable

information regarding the bacteria concentrations and the flow. Such data could be used in

the HSPF and SWAT models to further identify sensitive parameters and refine process

equations involving insensitive parameters as shown in Chapter 5; in a wet/dry analysis to

reveal more about the model process equations and sensitive parameters as proposed in

Chapter 6; and in the CC model to further quantify bacteria concentrations from runoff and
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baseflow sources as proposed in Chapter 5. Detailed data sets are expensive and rare.

However, developing a detailed data set with the above considerations in mind would

greatly improve modeling capacity and provide better tools for addressing in-stream

bacteria pollution.

3. Review Process Equations. It was shown in HSPF and SWAT that certain parameters

affect model output much more than other parameters (Chapters 5 and 6). The process

equations for all parameters in these complex models should be re-examined while asking

questions such as: What processes are being described by the insensitive parameters? Can

those equations be improved or should they be removed from the model? What are the

processes described by the sensitive parameters and how can they be improved? Moreover,

the Latin Hypercube Analysis (Chapter 5) showed that the structural uncertainty of the

models is the dominant source of uncertainty and that the only way to improve the models

is through changing the model structure. One possibility is that HSPF and SWAT structures

can be refined via simplified equations and reduced parameters without reducing

performance. Or, a complete overhaul of the model structure may be required.

4. Increase Use of the CC Model. The CC model is a new and attractive option for

watershed-scale bacteria modeling. It is easy to use and does not require the expertise

needed for models like HSPF and SWAT. Two particular advantages of the CC model are

that it uses streamflow data instead of a modeled hydrology component and that it is

conceptually simple and only requires calibration of two parameters. While in some cases

simpler process equations and reduced parameterizations limit model performance, the CC

model consistently achieves comparable and even better water-quality results than HSPF

and SWAT. The CC model may even be an attractive option for use in a multi-model

technique so that only one of the HSPF or SWAT models would be required. Regardless of

the application, the CC model warrants further examination in the watershed-scale

modeling of bacteria.
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Laroche, A.-M., J. Gallichand, R. Lagacé, and A. Pesant (1996). Simulating atrazine
transport with HSPF in an agricultural watershed. Journal of Environmental
Engineering 122(7), 622–630.

LaWare, P. and H. S. Rifai (2006). Modeling fecal coliform contamination in the Rio
Grande. Journal of the American Water Resources Association 42(2), 337–356.

Lee, S.-B., C.-G. Yoon, K. W. Jung, and H. S. Hwang (2010). Comparative evaluation of
runoff and water quality using HSPF and SWMM. Water Science and
Technology 62(6), 1401–1409.

Legates, D. R. and G. J. McCabe (1999). Evaluating the use of ”goodness-of-fit” measures
in hydrologic and hydroclimatic model validation. Water Resources Research 35(1),
233–241.

Ling, T., E. Achberger, C. Drapcho, and R. Bentson (2002). Quantifying adsorption of an
indicator bacteria in a soil-water system. Transactions of the American Society of
Agricultural Engineers 45(3), 669–674.

Liu, L., M. S. Phanikumar, S. L. Molloy, R. L. Whiteman, D. A. Shively, M. B. Nevers,
D. J. Schwab, and J. B. Rose (2006). Modeling the transport and inactivation of E.
coli and Enterococci in the near-shore region of Lake Michigan. Environmental
Science and Technology 40(16), 5022–5028.

Lowe, S. (2004). Estimation of input parameters in the HSPF watershed model. Journal of
Engineering Technology 1(Spr), 16–20.

Macler, B. A. and J. C. Merkle (2000). Current knowledge on groundwater microbial
pathogens and their control. Hydrogeology Journal 8, 29–40.



www.manaraa.com

140

Mantovan, P. and E. Todini (2006). Hydrological forecasting uncertainty assessment:
Incoherence of the GLUE methodology. Journal of Hydrology 330, 368–381.

Mantovan, P., E. Todini, and M. Martina (2007). Reply to comment by Keith Beven, Paul
Smith and Jim Freer on ‘Hydrological forecasting uncertainty assessment:
Incoherence of the GLUE methodology’. Journal of Hydrology 338, 319–324.

McDonald, A., D. Kay, and A. Jenkins (1982, August). Generation of fecal and total
coliform surges by stream flow manipulation in the absence of normal
hydrometeorological stimuli. Applied and Environmental Microbiology 44(2),
292–300.

McKay, M., W. Conover, and R. Beckman (1979). A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code.
Technometrics 21, 239–245.

McMurry, S., M. Coyne, and E. Perfect (1998). Fecal coliform transport through intact soil
blocks amended with poultry manure. Journal of Environmental Quality 27, 86–92.

Meays, C. L., K. Broersma, R. Nordin, A. Mazumder, and M. Samadpour (2006). Spatial
and annual variability in concentrations and sources of Escherichia coli in multiple
watersheds. Environmental Science and Technology 40, 5289–5296.

Melching, C. S. and W. Bauwens (2001). Uncertainty in coupled nonpoint source and
stream water-quality models. Journal of Water Resources Planning and
Management 127(6), 403–413.

Metcalf & Eddy. Revised by: George Tchobanoglous, Franklin L. Burton, and David
Stensel (2003). Wastewater engineering: Treatment and reuse, 4th edition. New
York: Mcgraw Hill.

Moriasi, D., J. Arnold, M. Van Liew, R. Bingner, R. Harmel, and T. Veith (2007). Model
evaluation guidelines for systematic quantification of accuracy in watershed
simulations. Transactions of the American Society of Agricultural and Biological
Engineers 50(3), 885–900.

Muirhead, R., R. Collins, and P. Bremer (2006a). The association of E. coli and soil
particles in overland flow. Water Science and Technology 54(3), 153–159.

Muirhead, R. W., R. P. Collins, and P. J. Bremer (2006b). Interaction of Escherichia coli and
soil particles in runoff. Applied and Environmental Microbiology 72(5), 3406–3411.

Nash, J. and J. Sutcliffe (1970). River flow forecasting through conceptual models: Part 1.
A discussion of principles. Journal of Hydrology 10(3), 282–290.

Neelakantan, T., G. Brion, and S. Lingireddy (2001). Neural network modelling of
Cryptosporidium and Giardia concentrations in the Delaware River, USA. Water
Science and Technology 43(12), 125–132.



www.manaraa.com

141

Neitsch, S., J. Arnold, J. Kiniry, and J. Williams (2005). Soil and Water Assessment Tool
theoretical documentation, version 2005. Temple, Texas : U.S. Department of
Agriculture, Agriculture Research Service, Grassland, Soil, and Water Research
Laboratory.

Obiri-Danso, K. and K. Jones (1999). Distribution and seasonality of microbial indicators
and thermophilic campylobacters in two freshwater bathing sites on the River Lune
in northwest England. Journal of Applied Microbiology 87, 822–832.

Oliver, D. M., A. L. Heathwaite, R. D. Fish, D. R. Chadwick, C. J. Hodgson, M. Winter,
and A. J. Butler (2009). Scale appropriate modelling of diffuse microbial pollution
from agriculture. Progress in Physical Geography 33(3), 358–377.

Pappas, E. A., R. S. Kanwar, J. L. Baker, J. C. Lorimor, and S. Mickelson (2008). Fecal
indicator bacteria in subsurface drain water following swine manure application.
Transactions of the American Society of Agricultural and Biological
Engineers 51(5), 1567–1573.

Paul, S., P. Haan, M. Matlock, S. Mukhtar, and S. Pillai (2004). Analysis of the HSPF water
quality parameter uncertainty in predicting peak in-stream fecal coliform
concentrations. Transactions of the American Society of Agricultural
Engineers 47(1), 69–78.

Pebesma, E. J. and G. B. Heuvelink (1999). Latin Hypercube sampling of Gaussian random
fields. Technometrics 41(4), 303–312.

Postma, E. (1995). Optimisation networks. In Artificial neural networks- An introduction to
ANN theory and practice. Springer.

Prada-Sarmiento, F. and N. Obregón-Neira (2009). Forecasting of monthly streamflows
based on artificial neural networks. Journal of Hydrologic Engineering 14(12),
1390–1395.

Razavi, S., B. A. Tolson, L. S. Matott, N. R. Thomson, A. MacLean, and F. R. Seglenieks
(2010, doi:10.1029/2009WR008957). Reducing the computational cost of automatic
calibration through model preemption. Water Resources Research 46(W11523).

Russo, S. A., J. Hunn, and G. W. Characklis (2011). Considering bacteria-sediment
associations in microbial fate and transport modeling. Journal of Environmental
Engineering 137(8), 697–706.

Sakura-Lemessy, D.-M. G. (2009). A multi-model approach to predicting pathogen
indicator bacteria loading in TMDL analyses. Ph. D. thesis, University of Miami,
Coral Gables, FL 33124.

Sándor, Z. and P. András (2004). Alternative sampling methods for estimating multivariate
normal probabilities. J. Econ. 120, 207–234.

Schalkoff, R. J. (1997). Artificial neural networks. New York, NY: McGraw-Hill.



www.manaraa.com

142

Scott, T. M., S. Parveen, K. M. Portier, J. B. Rose, M. L. Tamplin, S. R. Farrah, A. Koo, and
J. Lukasik (2003). Geographical variation in ribotype profiles of Escherichia coli
isolates from humans, swine, poultry, beef, and dairy cattle in Florida. Applied and
Environmental Microbiology 69(2), 1089–1092.

Sexton, A., A. Shirmohammadi, A. Sadeghi, and H. Montas (2011). Impact of parameter
uncertainty on critical SWAT output simulations. Transactions of the American
Society of Agricultural and Biological Engineers 54(2), 461–471.

Shapiro, S. and M. Wilk (1965). An analysis of variance test for normality (complete
samples). 52(3 and 4), 591–611.

Shen, Z., Q. Hong, H. Yu, and R. Liu (2008). Parameter uncertainty analysis of the
non-point source pollution in the Daning River watershed of the Three Gorges
Reservoir Region, China. Science of the Total Environment 405, 195–205.

Sheridan, J. (1997). Rainfall-streamflow relations for coastal plain watersheds. Applied
Engineering in Agriculture 13(3), 333–344.

Shirmohammadi, A., I. Chaubey, R. Harmel, D. Bosch, R. Muñoz-Carpena, C. Dharmasri,
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